Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 299(1): 102766, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470425

RESUMEN

Epidermal growth factor receptor (EGFR) signaling is frequently dysregulated in various cancers. The ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene (Cbl) regulates degradation of activated EGFR through ubiquitination and acts as an adaptor to recruit proteins required for trafficking. Here, we used stable isotope labeling with amino acids in cell culture mass spectrometry to compare Cbl complexes with or without epidermal growth factor (EGF) stimulation. We identified over a hundred novel Cbl interactors, and a secondary siRNA screen found that knockdown of Flotillin-2 (FLOT2) led to increased phosphorylation and degradation of EGFR upon EGF stimulation in HeLa cells. In PC9 and H441 cells, FLOT2 knockdown increased EGF-stimulated EGFR phosphorylation, ubiquitination, and downstream signaling, reversible by EGFR inhibitor erlotinib. CRISPR knockout (KO) of FLOT2 in HeLa cells confirmed EGFR downregulation, increased signaling, and increased dimerization and endosomal trafficking. Furthermore, we determined that FLOT2 interacted with both Cbl and EGFR. EGFR downregulation upon FLOT2 loss was Cbl dependent, as coknockdown of Cbl and Cbl-b restored EGFR levels. In addition, FLOT2 overexpression decreased EGFR signaling and growth. Overexpression of wildtype (WT) FLOT2, but not the soluble G2A FLOT2 mutant, inhibited EGFR phosphorylation upon EGF stimulation in HEK293T cells. FLOT2 loss induced EGFR-dependent proliferation and anchorage-independent growth. Lastly, FLOT2 KO increased tumor formation and tumor volume in nude mice and NSG mice, respectively. Together, these data demonstrated that FLOT2 negatively regulated EGFR activation and dimerization, as well as its subsequent ubiquitination, endosomal trafficking, and degradation, leading to reduced proliferation in vitro and in vivo.


Asunto(s)
Receptores ErbB , Neoplasias , Proteínas Proto-Oncogénicas c-cbl , Animales , Humanos , Ratones , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Ratones Desnudos , Neoplasias/genética , Neoplasias/fisiopatología , Fosforilación , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Ubiquitinación , Proteínas de la Membrana/metabolismo , Proteolisis , Regulación Neoplásica de la Expresión Génica
2.
BMC Bioinformatics ; 24(1): 244, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296383

RESUMEN

BACKGROUND: High throughput experiments in cancer and other areas of genomic research identify large numbers of sequence variants that need to be evaluated for phenotypic impact. While many tools exist to score the likely impact of single nucleotide polymorphisms (SNPs) based on sequence alone, the three-dimensional structural environment is essential for understanding the biological impact of a nonsynonymous mutation. RESULTS: We present a program, 3DVizSNP, that enables the rapid visualization of nonsynonymous missense mutations extracted from a variant caller format file using the web-based iCn3D visualization platform. The program, written in Python, leverages REST APIs and can be run locally without installing any other software or databases, or from a webserver hosted by the National Cancer Institute. It automatically selects the appropriate experimental structure from the Protein Data Bank, if available, or the predicted structure from the AlphaFold database, enabling users to rapidly screen SNPs based on their local structural environment. 3DVizSNP leverages iCn3D annotations and its structural analysis functions to assess changes in structural contacts associated with mutations. CONCLUSIONS: This tool enables researchers to efficiently make use of 3D structural information to prioritize mutations for further computational and experimental impact assessment. The program is available as a webserver at https://analysistools.cancer.gov/3dvizsnp or as a standalone python program at https://github.com/CBIIT-CGBB/3DVizSNP .


Asunto(s)
Biología Computacional , Mutación Missense , Biología Computacional/métodos , Genómica/métodos , Programas Informáticos , Mutación
3.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352301

RESUMEN

Oncogene activity rewires cellular transcription, creating new transcription networks to which cancer cells become addicted, by mechanisms that are still poorly understood. Using human and mouse models of T cell acute lymphoblastic leukemia (T-ALL), we identify an essential nuclear role for CHMP5, a cytoplasmic endosomal sorting complex required for transport (ESCRT) protein, in establishing and maintaining the T-ALL transcriptional program. Nuclear CHMP5 promoted the T-ALL gene program by augmenting recruitment of the co-activator BRD4 by the histone acetyl transferase p300 selectively at enhancers and super-enhancers, an interaction that potentiated H3K27 acetylation at these regulatory enhancers. Consequently, loss of CHMP5 diminished BRD4 occupancy at enhancers and super-enhancers and impaired RNA polymerase II pause release, which resulted in downregulation of key T-ALL genes, notably MYC. Reinforcing its importance in T-ALL pathogenesis, CHMP5 deficiency mitigated chemoresistance in human T-ALL cells and abrogated T-ALL induction by oncogenic NOTCH1 in vivo. Thus, the ESCRT protein CHMP5 is an essential positive regulator of the transcriptional machinery promoting T-ALL disease.

4.
Matrix Biol Plus ; 18: 100132, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37095886

RESUMEN

Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated. These novel TIMP functions include direct agonism/antagonism of multiple transmembrane receptors, as well as functional interactions with matrisome targets. While the family was fully identified over two decades ago, there has yet to be an in-depth study describing the expression of TIMPs in normal tissues of adult mammals. An understanding of the tissues and cell-types that express TIMPs 1 through 4, in both normal and disease states are important to contextualize the growing functional capabilities of TIMP proteins, which are often dismissed as non-canonical. Using publicly available single cell RNA sequencing data from the Tabula Muris Consortium, we analyzed approximately 100,000 murine cells across eighteen tissues from non-diseased organs, representing seventy-three annotated cell types, to define the diversity in Timp gene expression across healthy tissues. We describe the unique expression profiles across tissues and organ-specific cell types that all four Timp genes display. Within annotated cell-types, we identify clear and discrete cluster-specific patterns of Timp expression, particularly in cells of stromal and endothelial origins. RNA in-situ hybridization across four organs expands on the scRNA sequencing analysis, revealing novel compartments associated with individual Timp expression. These analyses emphasize a need for specific studies investigating the functional significance of Timp expression in the identified tissues and cell sub-types. This understanding of the tissues, specific cell types and microenvironment conditions in which Timp genes are expressed adds important physiological context to the growing array of novel functions for TIMP proteins.

5.
Cell Rep ; 42(11): 113454, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37976160

RESUMEN

Previous studies of the murine Ly49 and human KIR gene clusters implicated competing sense and antisense promoters in the control of variegated gene expression. In the current study, an examination of transcription factor genes defines an abundance of convergent and divergent sense/antisense promoter pairs, suggesting that competing promoters may control cell fate determination. Differentiation of CD34+ hematopoietic progenitors in vitro shows that cells with GATA1 antisense transcription have enhanced GATA2 transcription and a mast cell phenotype, whereas cells with GATA2 antisense transcription have increased GATA1 transcripts and an erythroblast phenotype. Detailed analyses of the AHR and RORC genes demonstrate the ability of competing promoters to act as binary switches and the association of antisense transcription with an immature/progenitor cell phenotype. These data indicate that alternative cell fates generated by promoter competition in lineage-determining transcription factors contribute to the programming of cell differentiation.


Asunto(s)
Factor de Transcripción GATA1 , Factores de Transcripción , Ratones , Humanos , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Regiones Promotoras Genéticas/genética , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo
6.
Genomics ; 98(1): 26-39, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21447378

RESUMEN

Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax-a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a "species" DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.


Asunto(s)
Bacillus anthracis/genética , Evolución Molecular , Genoma Bacteriano , Bacillus anthracis/patogenicidad , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Virulencia
7.
Cancer Res Commun ; 2(10): 1144-1161, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36388465

RESUMEN

Mitochondria are multifaceted organelles which are important for bioenergetics, biosynthesis and signaling in metazoans. Mitochondrial functions are frequently altered in cancer to promote both the energy and the necessary metabolic intermediates for biosynthesis required for tumor growth. Cancer stem cells (CSCs) contribute to chemotherapy resistance, relapse, and metastasis. Recent studies have shown that while non-stem, bulk cancer cells utilize glycolysis, breast CSCs are more dependent on oxidative phosphorylation (OxPhos) and therefore targeting mitochondria may inhibit CSC function. We previously reported that small molecule ONC201, which is an agonist for the mitochondrial caseinolytic protease (ClpP), induces mitochondrial dysfunction in breast cancer cells. In this study, we report that ClpP agonists inhibit breast cancer cell proliferation and CSC function in vitro and in vivo. Mechanistically, we found that OxPhos inhibition downregulates multiple pathways required for CSC function, such as the mevalonate pathway, YAP, Myc, and the HIF pathway. ClpP agonists showed significantly greater inhibitory effect on CSC functions compared with other mitochondria-targeting drugs. Further studies showed that ClpP agonists deplete NAD(P)+ and NAD(P)H, induce redox imbalance, dysregulate one-carbon metabolism and proline biosynthesis. Downregulation of these pathways by ClpP agonists further contribute to the inhibition of CSC function. In conclusion, ClpP agonists inhibit breast CSC functions by disrupting mitochondrial homeostasis in breast cancer cells and inhibiting multiple pathways critical to CSC function. Significance: ClpP agonists disrupt mitochondrial homeostasis by activating mitochondrial matrix protease ClpP. We report that ClpP agonists inhibit cell growth and cancer stem cell functions in breast cancer models by modulating multiple metabolic pathways essential to cancer stem cell function.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Péptido Hidrolasas/metabolismo , NAD/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Mitocondrias , Homeostasis , Endopeptidasas/metabolismo , Células Madre Neoplásicas , Endopeptidasa Clp/metabolismo
8.
Genomics ; 96(5): 290-302, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20654709

RESUMEN

Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of Haemophilus influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants.


Asunto(s)
Fiebre/microbiología , Variación Genética , Genoma Bacteriano , Haemophilus influenzae/clasificación , Filogenia , Púrpura/microbiología , Proteínas Bacterianas/genética , Brasil , Hibridación Genómica Comparativa , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidad , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN , Factores de Virulencia/genética
9.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896628

RESUMEN

Bacillus anthracis is the causative agent of anthrax, a disease of livestock, wildlife, and humans. Here, we present the draft genome sequences of five historical B. anthracis strains that were preserved as lyophilates in glass vials for decades.

10.
PeerJ ; 6: e4892, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868286

RESUMEN

When performing bioforensic casework, it is important to be able to reliably detect the presence of a particular organism in a metagenomic sample, even if the organism is only present in a trace amount. For this task, it is common to use a sequence classification program that determines the taxonomic affiliation of individual sequence reads by comparing them to reference database sequences. As metagenomic data sets often consist of millions or billions of reads that need to be compared to reference databases containing millions of sequences, such sequence classification programs typically use search heuristics and databases with reduced sequence diversity to speed up the analysis, which can lead to incorrect assignments. Thus, in a bioforensic setting where correct assignments are paramount, assignments of interest made by "first-pass" classifiers should be confirmed using the most precise methods and comprehensive databases available. In this study we present a BLAST-based method for validating the assignments made by less precise sequence classification programs, with optimal parameters for filtering of BLAST results determined via simulation of sequence reads from genomes of interest, and we apply the method to the detection of four pathogenic organisms. The software implementing the method is open source and freely available.

11.
Genes (Basel) ; 9(3)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494531

RESUMEN

High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens.

12.
Microbiome ; 6(1): 197, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30396371

RESUMEN

The Mid-Atlantic Microbiome Meet-up (M3) organization brings together academic, government, and industry groups to share ideas and develop best practices for microbiome research. In January of 2018, M3 held its fourth meeting, which focused on recent advances in biodefense, specifically those relating to infectious disease, and the use of metagenomic methods for pathogen detection. Presentations highlighted the utility of next-generation sequencing technologies for identifying and tracking microbial community members across space and time. However, they also stressed the current limitations of genomic approaches for biodefense, including insufficient sensitivity to detect low-abundance pathogens and the inability to quantify viable organisms. Participants discussed ways in which the community can improve software usability and shared new computational tools for metagenomic processing, assembly, annotation, and visualization. Looking to the future, they identified the need for better bioinformatics toolkits for longitudinal analyses, improved sample processing approaches for characterizing viruses and fungi, and more consistent maintenance of database resources. Finally, they addressed the necessity of improving data standards to incentivize data sharing. Here, we summarize the presentations and discussions from the meeting, identifying the areas where microbiome analyses have improved our ability to detect and manage biological threats and infectious disease, as well as gaps of knowledge in the field that require future funding and focus.


Asunto(s)
Armas Biológicas , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Humanos , Microbiota/fisiología , Análisis de Secuencia de ADN/métodos
13.
Genome Announc ; 5(32)2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798168

RESUMEN

The draft genome sequences of six Bacillus strains, isolated from the International Space Station and belonging to the Bacillus anthracis-B. cereus-B. thuringiensis group, are presented here. These strains were isolated from the Japanese Experiment Module (one strain), U.S. Harmony Node 2 (three strains), and Russian Segment Zvezda Module (two strains).

14.
Virology ; 318(1): 55-65, 2004 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-14972535

RESUMEN

We had previously reported that glycosphingolipids (GSL) support human immunodeficiency virus type 1 (HIV-1) entry. In this study, we further examined this issue by expressing HIV-1 receptors in GSL-deficient GM95 cells. GM95 cells expressing low levels of CD4 and CXCR4 or CCR5 did not support HIV-1 Env-mediated fusion. However, higher expression of these receptors rendered GM95 cells highly susceptible to fusion with cells expressing appropriate HIV-1 envelope glycoproteins (HIV-1 Envs). The GM95 cells exhibited a different fusion phenotype when compared with GSL(+) NIH3T3 cells bearing similar receptor levels. Fusion of GM95 targets expressing higher levels of CD4 and coreceptors occurred at 25 degrees C and was sensitive to cholesterol depletion or disruption of the cytoskeleton. In contrast, the fusion threshold of NIH3T3CD4X4/R5 targets was at >/=28 degrees C as previously reported and was insensitive to cholesterol depletion or cytoskeletal network disruption. On the basis of these observations, we propose that target membrane GSLs support HIV-1 Env-mediated fusion at low density of receptors by stabilizing receptor pools in natural targets.


Asunto(s)
Antígenos CD4/metabolismo , Productos del Gen env/farmacología , Glicoesfingolípidos/deficiencia , Fusión de Membrana/efectos de los fármacos , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Animales , Glicoesfingolípidos/metabolismo , VIH-1/patogenicidad , VIH-2/patogenicidad , Células HeLa , Humanos , Melanoma , Ratones , Células 3T3 NIH , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA