Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Blood ; 141(26): 3215-3225, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-36862974

RESUMEN

Coagulation factor V (fV) is the precursor of activated fV (fVa), an essential component of the prothrombinase complex required for the rapid activation of prothrombin in the penultimate step of the coagulation cascade. In addition, fV regulates the tissue factor pathway inhibitor α (TFPIα) and protein C pathways that inhibit the coagulation response. A recent cryogenic electron microscopy (cryo-EM) structure of fV has revealed the architecture of its A1-A2-B-A3-C1-C2 assembly but left the mechanism that keeps fV in its inactive state unresolved because of an intrinsic disorder in the B domain. A splice variant of fV, fV short, carries a large deletion of the B domain that produces constitutive fVa-like activity and unmasks epitopes for the binding of TFPIα. The cryo-EM structure of fV short was solved at 3.2 Å resolution and revealed the arrangement of the entire A1-A2-B-A3-C1-C2 assembly. The shorter B domain stretches across the entire width of the protein, making contacts with the A1, A2, and A3 domains but suspended over the C1 and C2 domains. In the portion distal to the splice site, several hydrophobic clusters and acidic residues provide a potential binding site for the basic C-terminal end of TFPIα. In fV, these epitopes may bind intramolecularly to the basic region of the B domain. The cryo-EM structure reported in this study advances our understanding of the mechanism that keeps fV in its inactive state, provides new targets for mutagenesis and facilitates future structural analysis of fV short in complex with TFPIα, protein S, and fXa.


Asunto(s)
Factor V , Factor Xa , Factor V/metabolismo , Microscopía por Crioelectrón , Factor Xa/metabolismo , Factor Va/química , Coagulación Sanguínea , Epítopos
2.
Blood ; 139(24): 3463-3473, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35427420

RESUMEN

The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.


Asunto(s)
Factor Xa , Protrombina , Microscopía por Crioelectrón , Factor V , Factor Va/metabolismo , Factor Xa/metabolismo , Protrombina/metabolismo , Tromboplastina/metabolismo
3.
Nat Chem Biol ; 18(1): 101-108, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34931065

RESUMEN

Although the individual structures and respiratory functions of cytochromes are well studied, the structural basis for their assembly, including transport of heme for attachment, are unknown. We describe cryo-electron microscopy (cryo-EM) structures of CcsBA, a bifunctional heme transporter and cytochrome c (cyt c) synthase. Models built from the cryo-EM densities show that CcsBA is trapped with heme in two conformations, herein termed the closed and open states. The closed state has heme located solely at a transmembrane (TM) site, with a large periplasmic domain oriented such that access of heme to the cytochrome acceptor is denied. The open conformation contains two heme moieties, one in the TM-heme site and another in an external site (P-heme site). The presence of heme in the periplasmic site at the base of a chamber induces a large conformational shift that exposes the heme for reaction with apocytochrome c (apocyt c). Consistent with these structures, in vivo and in vitro cyt c synthase studies suggest a mechanism for transfer of the periplasmic heme to cytochrome.


Asunto(s)
Microscopía por Crioelectrón/métodos , Citocromos c/biosíntesis , Hemo/metabolismo , Transporte de Proteínas
4.
Blood ; 137(22): 3137-3144, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684942

RESUMEN

Coagulation factor V (fV) is the precursor of fVa, which, together with fXa, Ca2+, and phospholipids, defines the prothrombinase complex and activates prothrombin in the penultimate step of the coagulation cascade. We solved the cryogenic electron microscopy (cryo-EM) structures of human fV and fVa at atomic (3.3 Å) and near-atomic (4.4 Å) resolution, respectively. The structure of fV reveals the entire A1-A2-B-A3-C1-C2 assembly, but with a surprisingly disordered B domain. The C1 and C2 domains provide a platform for interaction with phospholipid membranes and support the A1 and A3 domains, with the A2 domain sitting on top of them. The B domain is highly dynamic and visible only for short segments connecting to the A2 and A3 domains. The A2 domain reveals all sites of proteolytic processing by thrombin and activated protein C, a partially buried epitope for binding fXa, and fully exposed epitopes for binding activated protein C and prothrombin. Removal of the B domain and activation to fVa exposes the sites of cleavage by activated protein C at R306 and R506 and produces increased disorder in the A1-A2-A3-C1-C2 assembly, especially in the C-terminal acidic portion of the A2 domain that is responsible for prothrombin binding. Ordering of this region and full exposure of the fXa epitope emerge as necessary steps in the assembly of the prothrombin-prothrombinase complex. These structures offer molecular context for the function of fV and fVa and pioneer the analysis of coagulation factors by cryo-EM.


Asunto(s)
Microscopía por Crioelectrón , Factor Va , Factor Va/química , Factor Va/ultraestructura , Humanos , Dominios Proteicos
5.
Nat Commun ; 15(1): 6853, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127720

RESUMEN

Phytochromes (Phys) are a divergent cohort of bili-proteins that detect light through reversible interconversion between dark-adapted Pr and photoactivated Pfr states. While our understandings of downstream events are emerging, it remains unclear how Phys translate light into an interpretable conformational signal. Here, we present models of both states for a dimeric Phy with histidine kinase (HK) activity from the proteobacterium Pseudomonas syringae, which were built from high-resolution cryo-EM maps (2.8-3.4-Å) of the photosensory module (PSM) and its following signaling (S) helix together with lower resolution maps for the downstream output region augmented by RoseTTAFold and AlphaFold structural predictions. The head-to-head models reveal the PSM and its photointerconversion mechanism with strong clarity, while the HK region is interpretable but relatively mobile. Pr/Pfr comparisons show that bilin phototransformation alters PSM architecture culminating in a scissoring motion of the paired S-helices linking the PSMs to the HK bidomains that ends in reorientation of the paired catalytic ATPase modules relative to the phosphoacceptor histidines. This action apparently primes autophosphorylation enroute to phosphotransfer to the cognate DNA-binding response regulator AlgB which drives quorum-sensing behavior through transient association with the photoreceptor. Collectively, these models illustrate how light absorption conformationally translates into accelerated signaling by Phy-type kinases.


Asunto(s)
Proteínas Bacterianas , Histidina Quinasa , Fitocromo , Pseudomonas syringae , Transducción de Señal , Histidina Quinasa/metabolismo , Histidina Quinasa/química , Histidina Quinasa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fitocromo/metabolismo , Fitocromo/química , Pseudomonas syringae/metabolismo , Modelos Moleculares , Microscopía por Crioelectrón , Conformación Proteica , Multimerización de Proteína , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Luz
6.
PLoS One ; 19(9): e0311049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39325813

RESUMEN

Transgenic soybean, cotton, and maize tolerant to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides have been developed by introduction of a bacterial-derived PPO targeted into the chloroplast. PPO is a membrane-associated protein with an intrinsic tendency for aggregation, making expression, purification, and formulation at high concentrations difficult. In this study, transgenic PPO expressed in three crops was demonstrated to exhibit up to a 13 amino acid sequence difference in the N-terminus due to differential processing of the chloroplast transit peptide (CTP). Five PPO protein variants were produced in and purified from E. coli, each displaying equivalent immunoreactivity and functional activity, with values ranging from 193 to 266 nmol min-1 mg-1. Inclusion of an N-terminal 6xHis-tag or differential processing of the CTP peptide does not impact PPO functional activity. Additionally, structural modeling by Alphafold, ESMfold, and Openfold indicates that these short N-terminal extensions are disordered and predicted to not interfere with the mature PPO structure. These results support the view that safety studies on PPO from various crops can be performed from a single representative variant. Herein, we report a novel and robust method for large-scale production of PPO, enabling rapid production of more than 200 g of highly active PPO protein at 99% purity and low endotoxin contamination. We also present a formulation that allows for concentration of active PPO to > 75 mg/mL in a buffer suitable for mammalian toxicity studies.


Asunto(s)
Protoporfirinógeno-Oxidasa , Protoporfirinógeno-Oxidasa/metabolismo , Protoporfirinógeno-Oxidasa/genética , Protoporfirinógeno-Oxidasa/química , Plantas Modificadas Genéticamente , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Zea mays/genética , Zea mays/metabolismo , Zea mays/enzimología , Glycine max/genética , Glycine max/enzimología , Glycine max/metabolismo , Modelos Moleculares
7.
Nat Commun ; 15(1): 25, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167383

RESUMEN

Lipid nanodiscs have become a standard tool for studying membrane proteins, including using single particle cryo-electron microscopy (cryo-EM). We find that reconstituting the pentameric ligand-gated ion channel (pLGIC), Erwinia ligand-gated ion channel (ELIC), in different nanodiscs produces distinct structures by cryo-EM. The effect of the nanodisc on ELIC structure extends to the extracellular domain and agonist binding site. Additionally, molecular dynamic simulations indicate that nanodiscs of different size impact ELIC structure and that the nanodisc scaffold directly interacts with ELIC. These findings suggest that the nanodisc plays a crucial role in determining the structure of pLGICs, and that reconstitution of ion channels in larger nanodiscs may better approximate a lipid membrane environment.


Asunto(s)
Canales Iónicos Activados por Ligandos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Sitios de Unión , Lípidos
8.
Neuron ; 112(7): 1100-1109.e5, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38266643

RESUMEN

The Apolipoprotein E gene (APOE) is of great interest due to its role as a risk factor for late-onset Alzheimer's disease. ApoE is secreted by astrocytes in the central nervous system in high-density lipoprotein (HDL)-like lipoproteins. Structural models of lipidated ApoE of high resolution could aid in a mechanistic understanding of how ApoE functions in health and disease. Using monoclonal Fab and F(ab')2 fragments, we characterize the structure of lipidated ApoE on astrocyte-secreted lipoproteins. Our results provide support for the "double-belt" model of ApoE in nascent discoidal HDL-like lipoproteins, where two ApoE proteins wrap around the nanodisc in an antiparallel conformation. We further show that lipidated, recombinant ApoE accurately models astrocyte-secreted ApoE lipoproteins. Cryogenic electron microscopy of recombinant lipidated ApoE further supports ApoE adopting antiparallel dimers in nascent discoidal lipoproteins.


Asunto(s)
Apolipoproteínas E , Astrocitos , Lipoproteínas , Astrocitos/metabolismo , Apolipoproteínas E/genética , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Sistema Nervioso Central/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteína E3/metabolismo
9.
Nat Commun ; 15(1): 2750, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553463

RESUMEN

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/química , Microscopía por Crioelectrón , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología
10.
Nat Commun ; 14(1): 1712, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973289

RESUMEN

The pannexin 2 channel (PANX2) participates in multiple physiological processes including skin homeostasis, neuronal development, and ischemia-induced brain injury. However, the molecular basis of PANX2 channel function remains largely unknown. Here, we present a cryo-electron microscopy structure of human PANX2, which reveals pore properties contrasting with those of the intensely studied paralog PANX1. The extracellular selectivity filter, defined by a ring of basic residues, more closely resembles that of the distantly related volume-regulated anion channel (VRAC) LRRC8A, rather than PANX1. Furthermore, we show that PANX2 displays a similar anion permeability sequence as VRAC, and that PANX2 channel activity is inhibited by a commonly used VRAC inhibitor, DCPIB. Thus, the shared channel properties between PANX2 and VRAC may complicate dissection of their cellular functions through pharmacological manipulation. Collectively, our structural and functional analysis provides a framework for development of PANX2-specific reagents that are needed for better understanding of channel physiology and pathophysiology.


Asunto(s)
Conexinas , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Humanos , Aniones , Transporte Biológico , Conexinas/metabolismo , Microscopía por Crioelectrón , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
11.
bioRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36778491

RESUMEN

Homologous recombination (HR) is a pathway for the accurate repair of double-stranded DNA breaks. These breaks are resected to yield single-stranded DNA (ssDNA) that are coated by Replication Protein A (RPA). Saccharomyces cerevisiae Rad52 is a mediator protein that promotes HR by facilitating formation of Rad51 nucleoprotein filaments on RPA-coated ssDNA. Canonically, Rad52 has been described to function by displacing RPA to promote Rad51 binding. However, in vitro, Rad51 readily forms a filament by displacing RPA in the absence of Rad52. Yet, in vivo, Rad52 is essential for HR. Here, we resolve how Rad52 functions as a mediator using single-particle cryo-electron microscopy and biophysical approaches. We show that Rad52 functions as a homodecamer and catalyzes single-position nucleation of Rad51. The N-terminal half of Rad52 is a well-ordered ring, while the C-terminal half is disordered. An intrinsic asymmetry within Rad52 is observed, where one or a few of the C-terminal halves interact with the ordered N-terminal ring. Within the C-terminal half, we identify two conserved charged patches that harbor the Rad51 and RPA interacting motifs. Interactions between these two charged patches regulate a ssDNA binding. These features drive Rad51 binding to a single position on the Rad52 decameric ring. We propose a Rad52 catalyzed single-position nucleation model for the formation of pre-synaptic Rad51 filaments in HR.

12.
Biomed Pharmacother ; 166: 115341, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625322

RESUMEN

Non-small-cell lung cancer (NSCLC) and glioblastoma (GB) have poor prognoses. Discovery of new molecular targets is needed to improve therapy. Tax interacting protein 1 (TIP1), which plays a role in cancer progression, is overexpressed and radiation-inducible in NSCLC and GB. We evaluated the effect of an anti-TIP1 antibody alone and in combination with ionizing radiation (XRT) on NSCLC and GB in vitro and in vivo. NSCLC and GB cells were treated with anti-TIP1 antibodies and evaluated for proliferation, colony formation, endocytosis, and cell death. The efficacy of anti-TIP1 antibodies in combination with XRT on tumor growth was measured in mouse models of NSCLC and GB. mRNA sequencing was performed to understand the molecular mechanisms involved in the action of anti-TIP1 antibodies. We found that targeting the functional domain of TIP1 leads to endocytosis of the anti-TIP1 antibody followed by reduced proliferation and increased apoptosis-mediated cell death. Anti-TIP1 antibodies bound specifically (with high affinity) to cancer cells and synergized with XRT to significantly increase cytotoxicity in vitro and reduce tumor growth in mouse models of NSCLC and GB. Importantly, downregulation of cancer survival signaling pathways was found in vitro and in vivo following treatment with anti-TIP1 antibodies. TIP1 is a new therapeutic target for cancer treatment. Antibodies targeting the functional domain of TIP1 exhibited antitumor activity and enhanced the efficacy of radiation both in vitro and in vivo. Anti-TIP1 antibodies interrupt TIP1 function and are effective cancer therapy alone or in combination with XRT in mouse models of human cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , Paclitaxel , Modelos Animales de Enfermedad
13.
Nat Commun ; 14(1): 6215, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798272

RESUMEN

Homologous recombination (HR) is an essential double-stranded DNA break repair pathway. In HR, Rad52 facilitates the formation of Rad51 nucleoprotein filaments on RPA-coated ssDNA. Here, we decipher how Rad52 functions using single-particle cryo-electron microscopy and biophysical approaches. We report that Rad52 is a homodecameric ring and each subunit possesses an ordered N-terminal and disordered C-terminal half. An intrinsic structural asymmetry is observed where a few of the C-terminal halves interact with the ordered ring. We describe two conserved charged patches in the C-terminal half that harbor Rad51 and RPA interacting motifs. Interactions between these patches regulate ssDNA binding. Surprisingly, Rad51 interacts with Rad52 at two different bindings sites: one within the positive patch in the disordered C-terminus and the other in the ordered ring. We propose that these features drive Rad51 nucleation onto a single position on the DNA to promote formation of uniform pre-synaptic Rad51 filaments in HR.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopía por Crioelectrón , Reparación del ADN , ADN de Cadena Simple/metabolismo , Unión Proteica , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711931

RESUMEN

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. We developed and validated a novel method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and used solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise two protofilaments with pseudo-21 helical screw symmetry, very low twist and an interface formed by antiparallel beta strands of residues 85-93. The fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural landscape of LBD Asyn fibrils and inform further studies of disease mechanisms, imaging agents and therapeutics targeting Asyn.

15.
Nat Commun ; 13(1): 4570, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931773

RESUMEN

Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. Dominant mutations within DNAJB6 (Hsp40)-an Hsp70 co-chaperone-lead to a protein aggregation-linked myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights into the molecular basis of LGMDD1. Here, we show how mutations analogous to those found in LGMDD1 affect Sis1 (a functional homolog of human DNAJB6) function by altering the structure of client protein aggregates, interfering with the Hsp70 ATPase cycle, dimerization and substrate processing; poisoning the function of wild-type protein. These results uncover the mechanisms through which LGMDD1-associated mutations alter chaperone activity, and provide insights relevant to potential therapeutic interventions.


Asunto(s)
Distrofia Muscular de Cinturas , Proteínas de Saccharomyces cerevisiae , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Distrofia Muscular de Cinturas/genética , Mutación , Proteínas del Tejido Nervioso/metabolismo , Nucleótidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Sci Adv ; 7(9)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627432

RESUMEN

TMEM206 has been recently identified as an evolutionarily conserved chloride channel that underlies ubiquitously expressed, proton-activated, outwardly rectifying anion currents. Here, we report the cryo-electron microscopy structure of pufferfish TMEM206, which forms a trimeric channel, with each subunit comprising two transmembrane segments and a large extracellular domain. An ample vestibule in the extracellular region is accessible laterally from the three side portals. The central pore contains multiple constrictions. A conserved lysine residue near the cytoplasmic end of the inner helix forms the presumed chloride ion selectivity filter. Unprecedentedly, the core structure and assembly closely resemble those of the epithelial sodium channel/degenerin family of sodium channels that are unrelated in amino acid sequence and conduct cations instead of anions. Together with electrophysiology, this work provides insights into ion conduction and gating for a new class of chloride channels that is architecturally distinct from previously characterized chloride channel families.

17.
Commun Biol ; 4(1): 330, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712691

RESUMEN

Despite conserved catalytic integration mechanisms, retroviral intasomes composed of integrase (IN) and viral DNA possess diverse structures with variable numbers of IN subunits. To investigate intasome assembly mechanisms, we employed the Rous sarcoma virus (RSV) IN dimer that assembles a precursor tetrameric structure in transit to the mature octameric intasome. We determined the structure of RSV octameric intasome stabilized by a HIV-1 IN strand transfer inhibitor using single particle cryo-electron microscopy. The structure revealed significant flexibility of the two non-catalytic distal IN dimers along with previously unrecognized movement of the conserved intasome core, suggesting ordered conformational transitions between intermediates that may be important to capture the target DNA. Single amino acid substitutions within the IN C-terminal domain affected intasome assembly and function in vitro and infectivity of pseudotyped RSV virions. Unexpectedly, 17 C-terminal amino acids of IN were dispensable for virus infection despite regulating the transition of the tetrameric intasome to the octameric form in vitro. We speculate that this region may regulate the binding of highly flexible distal IN dimers to the intasome core to form the octameric complex. Our studies reveal key steps in the assembly of RSV intasomes.


Asunto(s)
Microscopía por Crioelectrón , ADN Viral/ultraestructura , Integrasas/ultraestructura , Virus del Sarcoma de Rous/ultraestructura , Imagen Individual de Molécula , Integración Viral , ADN Viral/metabolismo , Integrasa de VIH/ultraestructura , Inhibidores de Integrasa/farmacología , Integrasas/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica , Multimerización de Proteína , Virus del Sarcoma de Rous/efectos de los fármacos , Virus del Sarcoma de Rous/enzimología , Virus del Sarcoma de Rous/genética , Integración Viral/efectos de los fármacos , Replicación Viral
18.
Cell Rep ; 37(4): 109881, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34655519

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has necessitated the rapid development of antibody-based therapies and vaccines as countermeasures. Here, we use cryoelectron microscopy (cryo-EM) to characterize two protective anti-SARS-CoV-2 murine monoclonal antibodies (mAbs) in complex with the spike protein, revealing similarities between epitopes targeted by human and murine B cells. The more neutralizing mAb, 2B04, binds the receptor-binding motif (RBM) of the receptor-binding domain (RBD) and competes with angiotensin-converting enzyme 2 (ACE2). By contrast, 2H04 binds adjacent to the RBM and does not compete for ACE2 binding. Naturally occurring sequence variants of SARS-CoV-2 and corresponding neutralization escape variants selected in vitro map to our structurally defined epitopes, suggesting that SARS-CoV-2 might evade therapeutic antibodies with a limited set of mutations, underscoring the importance of combination mAb therapeutics. Finally, we show that 2B04 neutralizes SARS-CoV-2 infection by preventing ACE2 engagement, whereas 2H04 reduces host cell attachment without directly disrupting ACE2-RBM interactions, providing distinct inhibitory mechanisms used by RBD-specific mAbs.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Microscopía por Crioelectrón , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Humanos , Ratones , Dominios y Motivos de Interacción de Proteínas/inmunología , Estructura Cuaternaria de Proteína , Glicoproteína de la Espiga del Coronavirus/química
19.
Science ; 367(6483): 1230-1234, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32165583

RESUMEN

How long-lived memories withstand molecular turnover is a fundamental question. Aggregates of a prion-like RNA-binding protein, cytoplasmic polyadenylation element-binding (CPEB) protein, is a putative substrate of long-lasting memories. We isolated aggregated Drosophila CPEB, Orb2, from adult heads and determined its activity and atomic structure, at 2.6-angstrom resolution, using cryo-electron microscopy. Orb2 formed ~75-nanometer-long threefold-symmetric amyloid filaments. Filament formation transformed Orb2 from a translation repressor to an activator and "seed" for further translationally active aggregation. The 31-amino acid protofilament core adopted a cross-ß unit with a single hydrophilic hairpin stabilized through interdigitated glutamine packing. Unlike the hydrophobic core of pathogenic amyloids, the hydrophilic core of Orb2 filaments suggests how some neuronal amyloids could be a stable yet regulatable substrate of memory.


Asunto(s)
Amiloide/química , Proteínas de Drosophila/química , Memoria a Largo Plazo , Neuronas/metabolismo , Agregado de Proteínas , Proteínas de Unión al ARN/química , Factores de Transcripción/química , Factores de Escisión y Poliadenilación de ARNm/química , Animales , Microscopía por Crioelectrón , Drosophila melanogaster , Glutamina/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica
20.
Methods Enzymol ; 558: 99-124, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26068739

RESUMEN

The biology of an RNA is encoded in its structure and dynamics, whether that be binding to a protein, binding to another RNA, enzymatic catalysis, or becoming a substrate. In solution, most RNA molecules are sampling conformations, and their structures are best described as conformational ensembles. For larger RNAs, experiments that can describe the conformations of their domains can be particularly daunting, especially when the RNA is novel and not well characterized. Here, we explain how we have used site-specific 2-aminopurine as a fluorescent probe of the secondary and tertiary structures of a 60 nucleotide RNA, and what new findings we have about its Mg(2+)-dependent conformational changes. We focus on this RNA from prokaryotic ribosome as a proof of concept as well as a research project. Its tertiary structure is known from a cocrystal, and its secondary structure is modeled from phylogenetic conservation, but there are virtually no data describing the motions of its nucleotides in solution, or its folding kinetics. It is a perfect system to illustrate the unique information that comes from a comprehensive fluorescence study of this intricate RNA.


Asunto(s)
2-Aminopurina/química , Proteínas de Escherichia coli/ultraestructura , Sondas Moleculares/química , ARN Ribosómico 23S/ultraestructura , Proteínas Ribosómicas/ultraestructura , Ribosomas/química , Secuencia de Bases , Cationes Bivalentes , Escherichia coli/química , Proteínas de Escherichia coli/química , Fluorescencia , Cinética , Magnesio/química , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Pliegue del ARN , ARN Ribosómico 23S/química , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Espectrometría de Fluorescencia/métodos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA