Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ecotoxicol Environ Saf ; 110: 216-20, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261608

RESUMEN

Human populace of Assam, India repeatedly exposed to high concentration of iron in groundwater results in adverse health effects like hemochromatosis, liver cirrhosis and siderosis. In the present study, human hair and nail analysis were carried out to establish a possible relationship between iron toxicity and its deposition among the residents. Nail and hair iron concentrations ranged from 28.2 to 1046µgg(-1) (n=114) and 26.5-838 (n=108)µgg(-1) levels, respectively, among all the study participants. The iron content of the groundwater (421-5340µgL(-1)) (n=64) used for drinking purposes was positively correlated with both nail (r=0.788, p<0.0001) and hair (r=0.709, p<0.0001) iron concentrations. Age- and sex-matched controls corresponding to each group were selected from population residing in other parts of the country where groundwater does not have excess iron. All the study groups included population drinking iron-contaminated water above the WHO/BIS limit (>300µgL(-1)) for 5 years (Group 1), for more than 5-10 years (Group 2) and for more than 10 years (Group 3). Results suggested that the participants consuming groundwater exceeding the WHO limit of iron had significantly more iron accumulation than those using groundwater containing ≤300µgL(-1) iron (p<0.01). There was statistically higher concentration of iron in the nail samples than the hair samples in all the study groups (p<0.01). There was a positive correlation in iron concentration and the residence time of the participants (p<0.01). Iron levels in the male participants were significantly higher than the female participants in the present study (p<0.01). The current findings are sufficiently compelling to warrant more extensive study of iron exposure through drinking water and adverse effects to the human in the areas where iron concentration is high.


Asunto(s)
Cabello/química , Hierro/análisis , Uñas/química , Contaminantes Químicos del Agua/análisis , Adolescente , Adulto , Agua Potable/análisis , Exposición a Riesgos Ambientales/análisis , Femenino , Agua Subterránea/análisis , Cabello/metabolismo , Humanos , India/epidemiología , Hierro/farmacocinética , Hierro/toxicidad , Masculino , Persona de Mediana Edad , Uñas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Abastecimiento de Agua/análisis , Adulto Joven
2.
Int J Food Sci Nutr ; 65(7): 856-61, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24896300

RESUMEN

Anemia is a frequent problem in both the primary and secondary health care programs. In contrast, most areas of northeast India are vulnerable to iron toxicity. In the present study, we documented the effect of administration of iron rich water on hemolytic anemia in a Wistar rats' animal model. Hemolytic anemia was induced by phenyl hydrazine through intraperitoneal route and diagnosed by the lowering of blood hemoglobin. After inducing the hemolytic anemia, 24 Wistar rats (n = 6 in four groups) were randomly assigned to 1 mg/l, 5 mg/l, and 10 mg/l ferric oxide iron along with 1 mg/ml ascorbic acid administered through drinking water; a control group was treated with iron-free water. The hematological and biochemical parameters, iron levels in liver, spleen, and kidney were estimated after 30 d of treatment. In the group treated with 5 mg/l iron and ascorbic acid, a significant increase of serum iron and ferritin, and a decrease of TIBC (total iron binding capacity) were observed without changes in other biochemical parameters and histopathological findings. However, in the group treated with 10 mg/l iron and ascorbic acid, hematological changes with significantly higher values for white blood cell count, serum glutamic phospho transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, glucose, splenic, and liver iron content, indicate potential toxicity at this supplementation level. Data suggest that the optimum concentration of iron (5 mg/l) and ascorbic acid solution may improve anemic conditions and may be therapeutically beneficial in the treatment of iron deficiency anemia without any negative impact, while 10 mg/l in drinking water seems to be the threshold for the initiation of toxicity.


Asunto(s)
Anemia Hemolítica/tratamiento farmacológico , Ácido Ascórbico/farmacología , Agua Potable/química , Hierro/farmacología , Anemia Hemolítica/inducido químicamente , Animales , Ácido Ascórbico/administración & dosificación , Suplementos Dietéticos , Hierro/administración & dosificación , Hierro/química , Masculino , Fenilhidrazinas/toxicidad , Ratas , Ratas Wistar
3.
J Nanosci Nanotechnol ; 12(5): 3922-30, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22852326

RESUMEN

A novel and facile method for the synthesis of uniform stoichiometric powder form of non-magnetic iron oxide-hydroxide nanoparticles with spherical morphology and its application for defluoridation of drinking water is reported. X-ray powder diffraction analysis (XRD), BET surface area, FTIR, field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) images were used to characterize nanoscale iron oxide-hydroxide. Transmission electron microscopy (TEM) image revealed the formation of iron oxide-hydroxide nanoparticles with spherical morphology. The iron oxide-hydroxide nanoparticles showed an excellent ability to remove fluoride (F-) from contaminated water over a wide range of pH. The influences of temperature, stirring speed, pH, adsorbent dose and contact time were studied. The equilibrium data were tested with various isotherm models and finally, a calculation procedure was reported for the calculation of adsorbent requirement. The fluoride adsorbed nanoparticles was regenerated upto 70% using sodium hydroxide or hydrochloric acid solution. The iron oxide-hydroxide nanoparticles can be used as an effective and replicable adsorbent media for defluoridation of water in presence of competing anions like chloride, iodate, iodide and sulphate.

4.
ACS Omega ; 7(14): 11555-11559, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35449978

RESUMEN

In this article, we discuss carbon nanoparticles for application as antibacterials and food-packaging materials. The use of petroleum-derived products, synthetic materials, ceramics, wax, etc. in the food-packaging industry emits polluted gas and wastewater, which leads to environmental pollution. To overcome the problems faced by the industry to preserve and package food, carbon nanomaterials may be good alternatives to enhance the shelf life of food without affecting the nutrients. Carbon atoms bond with each other in diverse ways to form many allotropes, resulting in a variety of carbon nanomaterials (CNMs). CNMs include zero-dimensional carbon dots, graphene quantum dots, 1-dimensional carbon nanotubes, 2-dimensional pristine graphene, graphene oxide, reduced graphene oxide, and other derivatives of graphene. Most of the carbon-based nanomaterials are synthesized through a green process that is widely used in the field of food science and technology, and they are used mostly as antibacterial agents and as a biofiller in the development of active food-packaging materials. Carbon nanomaterials (CNMs), viz., carbon dots, graphene, activated carbon-based nanocomposites, carbon nanotubes, etc., are found to be environmentally benign and better materials for food packaging. With antibacterial efficiency, they support food preservation and other applications as well. Thus, carbon nanostructures are found to be applicable as superior materials for food preservation and packaging in modern industry.

5.
RSC Adv ; 10(16): 9356-9368, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35497225

RESUMEN

Background: Vector-borne diseases such as malaria, dengue, yellow fever, encephalitis and filariasis are considered serious human health concerns in the field of medical entomology. Controlling the population of mosquito vectors is one of the best strategies for combating such vector-borne diseases. However, the use of synthetic insecticides for longer periods of time increases mosquito resistance to the insecticides. Recently, the search for new environmentally friendly and efficient insecticides has attracted major attention globally. With the evolution of material sciences, researchers have reported the effective control of such diseases using various sustainable resources. The present investigation demonstrates a potent on-site biolarvicidal agent against different mosquito vectors such as Aedes albopictus, Anopheles stephensi and Culex quinquefasciatus. Methods: Stable and photo-induced colloidal silver nanoparticles were generated via the surface functionalization of the root extract of Cyprus rotundas. Characterizations of the nanoparticles were performed using assorted techniques, such as UV-visible spectroscopy, FTIR spectroscopy, DLS and HRTEM. The bioefficacy of the synthesized nanoparticles was investigated against different species of mosquito larvae through the evaluation of their life history trait studies, fecundity and hatchability rate of the treated larvae. Histopathological and polymerase chain reaction-random amplified polymorphic DNA (RAPD) analyses of the treated larvae were also examined to establish the cellular damage. Results: The synthesized nanoparticles showed remarkable larvicidal activity against mosquito larvae in a very low concentration range (0.001-1.00) mg L-1. The histopathological study confirmed that the present nanoparticles could easily enter the cuticle membrane of mosquito larvae and subsequently obliterate their complete intestinal system. Furthermore, RAPD analysis of the treated larvae could assess the damage of the DNA banding pattern. Conclusion: The present work demonstrates a potent biolarvicidal agent using sustainable bioresources of the aqueous Cyprus rotundas root extract. The results showed that the synthesized nanoparticles were stable under different physiological conditions such as temperature and photo-induced oxidation. The effectiveness of these materials against mosquito larvae was quantified at very low dose concentrations. The present biolarvicidal agent can be considered as an environmentally benign material to control the mosquito vectors with an immense potential for on-site field applications.

6.
Bioresour Technol ; 266: 267-274, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29982047

RESUMEN

Detoxification of silk processing effluents and sludge (SPES) through composting approaches is a new idea. This study examined the biodegradation potential of two epigeic earthworms (Eisenia fetida and Eudrilus eugeniae) in different SPES and cow dung (CD) mixtures in comparison with composting. N, P, S, Fe and Mn availability significantly increased upon vermicomposting compared to aerobic composting. The alkaline pH of the feedstocks satisfactorily neutralized under vermicomposting. The Ca-K availability and cation exchange dynamics readily stabilized due to vermicomposting. Interestingly, Eisenia fetida exhibited greater adaptability towards the toxic SPES materials than Eudrilus eugeniae, which was accompanied by 60-70% reduction of Cd, Cr, Zn and Pb levels in Eisenia system, whereas metal accumulation ability of Eudrilus eugeniae was remarkable. Moreover, both the species equally contributed in augmentation of beneficial (N-fixing and P-solubilizing) microorganisms in the feedstocks. Overall, nutrient enrichment and sanitizing potency of vermitechnology was explicitly manifested in SPES + CD (1:1) combination.


Asunto(s)
Residuos Industriales , Oligoquetos , Eliminación de Residuos , Seda , Animales , Biodegradación Ambiental , Bovinos , Femenino , Metales , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA