Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 58(1): 397-404, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30557015

RESUMEN

Double-perovskite Lu2NiIrO6 was synthesized at high pressure (6 GPa) and high temperature (1300 °C). Synchrotron powder X-ray diffraction indicates that its structure is a monoclinic double perovskite (space group P21/ n) with a small, 11% Ni/Ir antisite disorder. X-ray absorption near-edge spectroscopy measurements established Ni2+ and Ir4+ formal oxidation states. Magnetic studies indicate a ferrimagnetic transition at 207 K. The low-temperature magnetization curve of Lu2NiIrO6 features broad hysteresis with a coercive field as high as 48 kOe. These results encourage the search for hard magnets in the class of 3d/5d double-perovskite oxides.

2.
Phys Rev B ; 982018.
Artículo en Inglés | MEDLINE | ID: mdl-30984900

RESUMEN

We study Ti 1s near-edge spectroscopy in PbTiO3 at various temperatures above and below its tetragonal-to-cubic phase transition, and in SrTiO3 at room temperature. Ab initio molecular dynamics (AIMD) runs on 80-atom supercells are used to determine the average internal coordinates and their fluctuations. We determine that one vector local order parameter is the dominant contributor to changes in spectral features: the displacement of the Ti ion with respect to its axial O neighbors in each Cartesian direction, as these displacements enhance the cross section for transitions to Eg-derived core-hole exciton levels. Using periodic five-atom structures whose relative Ti-O displacements match the root-mean-square values from the AIMD simulations, and core-hole Bethe-Salpeter equation (BSE) calculations, we quantitatively predict the respective Ti 1s near-edge spectra. Properly accounting for atomic fluctuations greatly improves the agreement between theoretical and experimental spectra. The evolution of relative strengths of spectral features vs temperature and electric field polarization vector are captured in considerable detail. This work shows that local structure can be characterized from first-principles sufficiently well to aid both the prediction and the interpretation of near-edge spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA