Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 133(2): 108-119, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37317833

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the MYBPC3 gene (p.Lys600Asnfs*2), but who exhibited highly divergent clinical manifestations. METHODS: We used a combination of induced pluripotent stem cell (iPSC)-based disease modeling and CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing to generate patient-specific cardiomyocytes (iPSC-CMs) and isogenic controls lacking the pathogenic MYBPC3 variant. RESULTS: Mutant iPSC-CMs developed impaired mitochondrial bioenergetics, which was dependent on the presence of the mutation. Moreover, we could detect altered excitation-contraction coupling in iPSC-CMs from the severely affected individual. The pathogenic MYBPC3 variant was found to be necessary, but not sufficient, to induce iPSC-CM hyperexcitability, suggesting the presence of additional genetic modifiers. Whole-exome sequencing of the mutant carriers identified a variant of unknown significance in the MYH7 gene (p.Ile1927Phe) uniquely present in the individual with severe HCM. We finally assessed the pathogenicity of this variant of unknown significance by functionally evaluating iPSC-CMs after editing the variant. CONCLUSIONS: Our results indicate that the p.Ile1927Phe variant of unknown significance in MYH7 can be considered as a modifier of HCM expressivity when found in combination with truncating variants in MYBPC3. Overall, our studies show that iPSC-based modeling of clinically discordant subjects provides a unique platform to functionally assess the effect of genetic modifiers.


Asunto(s)
Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Edición Génica
2.
Circulation ; 147(1): 47-65, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36325906

RESUMEN

BACKGROUND: The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS: We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS: Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS: These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cardiomiopatías , Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Cardiopatías Congénitas/complicaciones , Cardiomiopatías/etiología , Miocitos Cardíacos , Válvula Aórtica/diagnóstico por imagen , Factores de Transcripción , Proteínas Cromosómicas no Histona
3.
Hum Mutat ; 42(11): 1488-1502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34420246

RESUMEN

Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.


Asunto(s)
Neoplasias de la Mama/genética , Exones , Genes BRCA1 , Tamización de Portadores Genéticos , Predisposición Genética a la Enfermedad , Empalme del ARN , Femenino , Humanos , Intrones
4.
Rev Endocr Metab Disord ; 22(4): 1189-1200, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34241766

RESUMEN

The possibility of reprogramming human somatic cells to pluripotency has opened unprecedented opportunities for creating genuinely human experimental models of disease. Inborn errors of metabolism (IEMs) constitute a greatly heterogeneous class of diseases that appear, in principle, especially suited to be modeled by iPSC-based technology. Indeed, dozens of IEMs have already been modeled to some extent using patient-specific iPSCs. Here, we review the advantages and disadvantages of iPSC-based disease modeling in the context of IEMs, as well as particular challenges associated to this approach, together with solutions researchers have proposed to tackle them. We have structured this review around six lessons that we have learnt from those previous modeling efforts, and that we believe should be carefully considered by researchers wishing to embark in future iPSC-based models of IEMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Errores Innatos del Metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Errores Innatos del Metabolismo/metabolismo
5.
Biomacromolecules ; 22(11): 4582-4591, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34613701

RESUMEN

Accumulation of misfolded α-synuclein (α-syn) is a hallmark of Parkinson's disease (PD) thought to play important roles in the pathophysiology of the disease. Dendritic systems, able to modulate the folding of proteins, have emerged as promising new therapeutic strategies for PD treatment. Dendrimers have been shown to be effective at inhibiting α-syn aggregation in cell-free systems and in cell lines. Here, we set out to investigate the effects of dendrimers on endogenous α-syn accumulation in disease-relevant cell types from PD patients. For this purpose, we chose cationic carbosilane dendrimers of bow-tie topology based on their performance at inhibiting α-syn aggregation in vitro. Dopamine neurons were differentiated from induced pluripotent stem cell (iPSC) lines generated from PD patients carrying the LRRK2G2019S mutation, which reportedly display abnormal accumulation of α-syn, and from healthy individuals as controls. Treatment of PD dopamine neurons with non-cytotoxic concentrations of dendrimers was effective at preventing abnormal accumulation and aggregation of α-syn. Our results in a genuinely human experimental model of PD highlight the therapeutic potential of dendritic systems and open the way to developing safe and efficient therapies for delaying or even halting PD progression.


Asunto(s)
Dendrímeros , Enfermedad de Parkinson , alfa-Sinucleína , Dendrímeros/farmacología , Neuronas Dopaminérgicas , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Silanos , alfa-Sinucleína/genética
6.
Mol Cell Proteomics ; 18(9): 1745-1755, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221719

RESUMEN

Adult zebrafish, in contrast to mammals, are able to regenerate their hearts in response to injury or experimental amputation. Our understanding of the cellular and molecular bases that underlie this process, although fragmentary, has increased significantly over the last years. However, the role of the extracellular matrix (ECM) during zebrafish heart regeneration has been comparatively rarely explored. Here, we set out to characterize the ECM protein composition in adult zebrafish hearts, and whether it changed during the regenerative response. For this purpose, we first established a decellularization protocol of adult zebrafish ventricles that significantly enriched the yield of ECM proteins. We then performed proteomic analyses of decellularized control hearts and at different times of regeneration. Our results show a dynamic change in ECM protein composition, most evident at the earliest (7 days postamputation) time point analyzed. Regeneration associated with sharp increases in specific ECM proteins, and with an overall decrease in collagens and cytoskeletal proteins. We finally tested by atomic force microscopy that the changes in ECM composition translated to decreased ECM stiffness. Our cumulative results identify changes in the protein composition and mechanical properties of the zebrafish heart ECM during regeneration.


Asunto(s)
Matriz Extracelular/fisiología , Corazón/fisiología , Miocardio/citología , Regeneración/fisiología , Proteínas de Pez Cebra/análisis , Animales , Fenómenos Biomecánicos , Matriz Extracelular/ultraestructura , Proteínas de la Matriz Extracelular/análisis , Proteínas de la Matriz Extracelular/metabolismo , Microscopía de Fuerza Atómica , Proteómica/métodos , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540699

RESUMEN

Cardiac tissue engineering is very much in a current focus of regenerative medicine research as it represents a promising strategy for cardiac disease modelling, cardiotoxicity testing and cardiovascular repair. Advances in this field over the last two decades have enabled the generation of human engineered cardiac tissue constructs with progressively increased functional capabilities. However, reproducing tissue-like properties is still a pending issue, as constructs generated to date remain immature relative to native adult heart. Moreover, there is a high degree of heterogeneity in the methodologies used to assess the functionality and cardiac maturation state of engineered cardiac tissue constructs, which further complicates the comparison of constructs generated in different ways. Here, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, and types of engineering strategies utilized to date. Moreover, we discuss the main functional assays used to evaluate the cardiac maturation state of the constructs, both at the cellular and the tissue levels. We trust that researchers interested in developing engineered cardiac tissue constructs will find the information reviewed here useful. Furthermore, we believe that providing a unified framework for comparison will further the development of human engineered cardiac tissue constructs displaying the specific properties best suited for each particular application.


Asunto(s)
Cardiopatías/terapia , Miocardio , Medicina Regenerativa , Ingeniería de Tejidos , Animales , Corazón/fisiología , Humanos , Células Madre Pluripotentes , Andamios del Tejido
8.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638840

RESUMEN

BACKGROUND: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). METHODS: Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. RESULTS: In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. CONCLUSIONS: These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA.


Asunto(s)
Atrofia Geográfica , Células Madre Pluripotentes Inducidas , Epitelio Pigmentado de la Retina , Animales , Antígenos de Diferenciación/biosíntesis , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patología , Atrofia Geográfica/cirugía , Xenoinjertos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/trasplante , Porcinos
9.
Nat Mater ; 18(9): 1015-1023, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31160803

RESUMEN

Epithelial repair and regeneration are driven by collective cell migration and division. Both cellular functions involve tightly controlled mechanical events, but how physical forces regulate cell division in migrating epithelia is largely unknown. Here we show that cells dividing in the migrating zebrafish epicardium exert large cell-extracellular matrix (ECM) forces during cytokinesis. These forces point towards the division axis and are exerted through focal adhesions that connect the cytokinetic ring to the underlying ECM. When subjected to high loading rates, these cytokinetic focal adhesions prevent closure of the contractile ring, leading to multi-nucleation through cytokinetic failure. By combining a clutch model with experiments on substrates of different rigidity, ECM composition and ligand density, we show that failed cytokinesis is triggered by adhesion reinforcement downstream of increased myosin density. The mechanical interaction between the cytokinetic ring and the ECM thus provides a mechanism for the regulation of cell division and polyploidy that may have implications in regeneration and cancer.


Asunto(s)
División Celular , Citocinesis , Pericardio/citología , Poliploidía , Pez Cebra , Animales , Matriz Extracelular
10.
Proc Natl Acad Sci U S A ; 114(50): 13188-13193, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29192024

RESUMEN

Eph receptor signaling plays key roles in vertebrate tissue boundary formation, axonal pathfinding, and stem cell regeneration by steering cells to positions defined by its ligand ephrin. Some of the key events in Eph-ephrin signaling are understood: ephrin binding triggers the clustering of the Eph receptor, fostering transphosphorylation and signal transduction into the cell. However, a quantitative and mechanistic understanding of how the signal is processed by the recipient cell into precise and proportional responses is largely lacking. Studying Eph activation kinetics requires spatiotemporal data on the number and distribution of receptor oligomers, which is beyond the quantitative power offered by prevalent imaging methods. Here we describe an enhanced fluorescence fluctuation imaging analysis, which employs statistical resampling to measure the Eph receptor aggregation distribution within each pixel of an image. By performing this analysis over time courses extending tens of minutes, the information-rich 4D space (x, y, oligomerization, time) results were coupled to straightforward biophysical models of protein aggregation. This analysis reveals that Eph clustering can be explained by the combined contribution of polymerization of receptors into clusters, followed by their condensation into far larger aggregates. The modeling reveals that these two competing oligomerization mechanisms play distinct roles: polymerization mediates the activation of the receptor by assembling monomers into 6- to 8-mer oligomers; condensation of the preassembled oligomers into large clusters containing hundreds of monomers dampens the signaling. We propose that the polymerization-condensation dynamics creates mechanistic explanation for how cells properly respond to variable ligand concentrations and gradients.


Asunto(s)
Efrinas/metabolismo , Multimerización de Proteína , Receptores de la Familia Eph/metabolismo , Transducción de Señal , Células HEK293 , Humanos , Polimerizacion , Receptores de la Familia Eph/química
11.
J Pharmacol Exp Ther ; 370(3): 761-771, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30728248

RESUMEN

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are a promising cell source for cardiac repair after myocardial infarction (MI) because they offer several advantages such as potential to remuscularize infarcted tissue, integration in the host myocardium, and paracrine therapeutic effects. However, cell delivery issues have limited their potential application in clinical practice, showing poor survival and engraftment after transplantation. In this work, we hypothesized that the combination of hiPSC-CMs with microparticles (MPs) could enhance long-term cell survival and retention in the heart and consequently improve cardiac repair. CMs were obtained by differentiation of hiPSCs by small-molecule manipulation of the Wnt pathway and adhered to biomimetic poly(lactic-co-glycolic acid) MPs covered with collagen and poly(d-lysine). The potential of the system to support cell survival was analyzed in vitro, demonstrating a 1.70-fold and 1.99-fold increase in cell survival after 1 and 4 days, respectively. The efficacy of the system was tested in a mouse MI model. Interestingly, 2 months after administration, transplanted hiPSC-CMs could be detected in the peri-infarct area. These cells not only maintained the cardiac phenotype but also showed in vivo maturation and signs of electrical coupling. Importantly, cardiac function was significantly improved, which could be attributed to a paracrine effect of cells. These findings suggest that MPs represent an excellent platform for cell delivery in the field of cardiac repair, which could also be translated into an enhancement of the potential of cell-based therapies in other medical applications.


Asunto(s)
Plásticos Biodegradables/uso terapéutico , Cardiopatías/terapia , Células Madre Pluripotentes Inducidas/trasplante , Miocitos Cardíacos/trasplante , Nanopartículas/uso terapéutico , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Cardiopatías/patología , Pruebas de Función Cardíaca , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Infarto del Miocardio/terapia , Remodelación Ventricular
12.
Genes Dev ; 24(6): 561-73, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20231315

RESUMEN

Human pluripotent stem cells, such as embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), have the unique abilities of differentiation into any cell type of the organism (pluripotency) and indefinite self-renewal. Here, we show that the Rem2 GTPase, a suppressor of the p53 pathway, is up-regulated in hESCs and, by loss- and gain-of-function studies, that it is a major player in the maintenance of hESC self-renewal and pluripotency. We show that Rem2 mediates the fibroblastic growth factor 2 (FGF2) signaling pathway to maintain proliferation of hESCs. We demonstrate that Rem2 effects are mediated by suppressing the transcriptional activity of p53 and cyclin D(1) to maintain survival of hESCs. Importantly, Rem2 does this by preventing protein degradation during DNA damage. Given that Rem2 maintains hESCs, we also show that it is as efficient as c-Myc by enhancing reprogramming of human somatic cells into iPSCs eightfold. Rem2 does this by accelerating the cell cycle and protecting from apoptosis via its effects on cyclin D(1) expression/localization and suppression of p53 transcription. We show that the effects of Rem2 on cyclin D(1) are independent of p53 function. These results define the cell cycle and apoptosis as a rate-limiting step during the reprogramming phenomena. Our studies highlight the possibility of reprogramming somatic cells by imposing hESC-specific cell cycle features for making safer iPSCs for cell therapy use.


Asunto(s)
Reprogramación Celular , Ciclina D1/metabolismo , Células Madre Embrionarias/fisiología , Regulación de la Expresión Génica , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Ciclo Celular , Supervivencia Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Humanos , Transporte de Proteínas/fisiología
13.
Nature ; 464(7288): 606-9, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20336145

RESUMEN

Although mammalian hearts show almost no ability to regenerate, there is a growing initiative to determine whether existing cardiomyocytes or progenitor cells can be coaxed into eliciting a regenerative response. In contrast to mammals, several non-mammalian vertebrate species are able to regenerate their hearts, including the zebrafish, which can fully regenerate its heart after amputation of up to 20% of the ventricle. To address directly the source of newly formed cardiomyocytes during zebrafish heart regeneration, we first established a genetic strategy to trace the lineage of cardiomyocytes in the adult fish, on the basis of the Cre/lox system widely used in the mouse. Here we use this system to show that regenerated heart muscle cells are derived from the proliferation of differentiated cardiomyocytes. Furthermore, we show that proliferating cardiomyocytes undergo limited dedifferentiation characterized by the disassembly of their sarcomeric structure, detachment from one another and the expression of regulators of cell-cycle progression. Specifically, we show that the gene product of polo-like kinase 1 (plk1) is an essential component of cardiomyocyte proliferation during heart regeneration. Our data provide the first direct evidence for the source of proliferating cardiomyocytes during zebrafish heart regeneration and indicate that stem or progenitor cells are not significantly involved in this process.


Asunto(s)
Desdiferenciación Celular , Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración/fisiología , Pez Cebra/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Proliferación Celular , Regulación de la Expresión Génica , Miocitos Cardíacos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Regeneración/genética , Sarcómeros/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Quinasa Tipo Polo 1
14.
Zygote ; 24(6): 839-847, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27702419

RESUMEN

While vitrification has become the method of choice for preservation of human oocytes and embryos, cryopreservation of complex tissues and of large yolk-containing cells, remains largely unsuccessful. One critical step in such instances is appropriate permeation while avoiding potentially toxic concentrations of cryoprotectants. Permeation of water and small non-charged solutes, such as those used as cryoprotectants, occurs largely through membrane channel proteins termed aquaporins (AQPs). Substitution of a Thr by an Ala residue in the pore-forming motif of the zebrafish (Dario rerio) Aqp3b paralog resulted in a mutant (DrAqp3b-T85A) that when expressed in Xenopus or porcine oocytes increased their permeability to ethylene glycol at pH 7.5 and 8.5. The main objective of this study was to test whether ectopic expression of DrAqp3b-T85A also conferred higher resistance to cryoinjury. For this, DrAqp3b-T85A + eGFP (reporter) cRNA, or eGFP cRNA alone, was microinjected into in vivo fertilized 1-cell mouse zygotes. Following culture to the 2-cell stage, appropriate membrane expression of DrAqp3b-T85A was confirmed by immunofluorescence microscopy using a primary specific antibody directed against the C-terminus of DrAqp3b. Microinjected 2-cell embryos were then cryopreserved using a fast-freezing rate and low concentration (1.5 M) of ethylene glycol in order to highlight any benefits from DrAqp3b-T85A expression. Notably, post-thaw survival rates were higher (P<0.05) for T85A-eGFP-injected than for -uninjected or eGFP-injected embryos (73±7.3 vs. 28±7.3 or 14±6.7, respectively). We propose that ectopic expression of mutant AQPs may provide an avenue to improve cryopreservation results of large cells and tissues in which current vitrification protocols yield low survival.


Asunto(s)
Acuaporina 3/genética , Criopreservación/métodos , Crioprotectores/farmacología , Proteínas de Pez Cebra/genética , Cigoto/fisiología , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Acuaporina 3/metabolismo , Blastómeros , Glicol de Etileno/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Ratones Endogámicos , Mutación , Oocitos/fisiología , Sus scrofa , Proteínas de Pez Cebra/metabolismo
15.
Nature ; 460(7259): 1140-4, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19668186

RESUMEN

Reprogramming somatic cells to induced pluripotent stem (iPS) cells has been accomplished by expressing pluripotency factors and oncogenes, but the low frequency and tendency to induce malignant transformation compromise the clinical utility of this powerful approach. We address both issues by investigating the mechanisms limiting reprogramming efficiency in somatic cells. Here we show that reprogramming factors can activate the p53 (also known as Trp53 in mice, TP53 in humans) pathway. Reducing signalling to p53 by expressing a mutated version of one of its negative regulators, by deleting or knocking down p53 or its target gene, p21 (also known as Cdkn1a), or by antagonizing reprogramming-induced apoptosis in mouse fibroblasts increases reprogramming efficiency. Notably, decreasing p53 protein levels enabled fibroblasts to give rise to iPS cells capable of generating germline-transmitting chimaeric mice using only Oct4 (also known as Pou5f1) and Sox2. Furthermore, silencing of p53 significantly increased the reprogramming efficiency of human somatic cells. These results provide insights into reprogramming mechanisms and suggest new routes to more efficient reprogramming while minimizing the use of oncogenes.


Asunto(s)
Reprogramación Celular/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Queratinocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
16.
Nature ; 460(7251): 53-9, 2009 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-19483674

RESUMEN

The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.


Asunto(s)
Anemia de Fanconi/patología , Anemia de Fanconi/terapia , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes/citología , Línea Celular , Reprogramación Celular , Salud , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes/metabolismo
17.
Nat Genet ; 38(11): 1316-22, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17013396

RESUMEN

Primary cilia are microtubule-based organelles that project from the surface of nearly every animal cell. Although important functions of primary cilia in morphogenesis and tissue homeostasis have been identified, the mechanisms that control the formation of primary cilia are not understood. Here we characterize a zebrafish gene, termed duboraya (dub), that is essential for ciliogenesis. Knockdown of dub in zebrafish embryos results in both defects in primary cilia formation in Kupffer's vesicle and randomization of left-right organ asymmetries. We show that, at the molecular level, the function of dub in ciliogenesis is regulated by phosphorylation, which in turn depends on Frizzled-2-mediated noncanonical Wnt signaling. We also provide evidence that, at the cellular level, dub function is essential for actin organization in the cells lining Kupffer's vesicle. Taken together, our findings identify a molecular factor that links noncanonical Wnt signaling with the control of left-right axis specification, and provide an entry point for analyzing the mechanisms that regulate primary cilia formation.


Asunto(s)
Tipificación del Cuerpo/genética , Cilios/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/fisiología , Clonación Molecular , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Transducción de Señal
18.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329129

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease associated with progressive death of midbrain dopamine (DAn) neurons in the substantia nigra (SN). Since it has been proposed that patients with PD exhibit an overall proinflammatory state, and since astrocytes are key mediators of the inflammation response in the brain, here we sought to address whether astrocyte-mediated inflammatory signaling could contribute to PD neuropathology. For this purpose, we generated astrocytes from induced pluripotent stem cells (iPSCs) representing patients with PD and healthy controls. Transcriptomic analyses identified a unique inflammatory gene expression signature in PD astrocytes compared with controls. In particular, the proinflammatory cytokine IL-6 was found to be highly expressed and released by PD astrocytes and was found to induce toxicity in DAn. Mechanistically, neuronal cell death was mediated by IL-6 receptor (IL-6R) expressed in human PD neurons, leading to downstream activation of STAT3. Blockage of IL-6R by the addition of the FDA-approved anti-IL-6R antibody, Tocilizumab, prevented PD neuronal death. SN neurons overexpressing IL-6R and reactive astrocytes expressing IL-6 were detected in postmortem brain tissue of patients at early stages of PD. Our findings highlight the potential role of astrocyte-mediated inflammatory signaling in neuronal loss in PD and pave the way for the design of future therapeutics.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Astrocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-6/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas Dopaminérgicas/metabolismo
19.
Nat Rev Cardiol ; 20(5): 309-324, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36376437

RESUMEN

The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Ventrículos Cardíacos/patología , Fibroblastos/patología , Miocardio/patología , Remodelación Ventricular
20.
Antioxidants (Basel) ; 12(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37507917

RESUMEN

Anthracyclines are widely used in the treatment of many solid cancers, but their efficacy is limited by cardiotoxicity. As the number of pediatric cancer survivors continues to rise, there has been a concomitant increase in people living with anthracycline-induced cardiotoxicity. Accordingly, there is an ongoing need for new models to better understand the pathophysiological mechanisms of anthracycline-induced cardiac damage. Here we generated induced pluripotent stem cells (iPSCs) from two pediatric oncology patients with acute cardiotoxicity induced by anthracyclines and differentiated them to ventricular cardiomyocytes (hiPSC-CMs). Comparative analysis of these cells (CTX hiPSC-CMs) and control hiPSC-CMs revealed that the former were significantly more sensitive to cell injury and death from the anthracycline doxorubicin (DOX), as measured by viability analysis, cleaved caspase 3 expression, oxidative stress, genomic and mitochondrial damage and sarcomeric disorganization. The expression of several mRNAs involved in structural integrity and inflammatory response were also differentially affected by DOX. Functionally, optical mapping analysis revealed higher arrythmia complexity after DOX treatment in CTX iPSC-CMs. Finally, using a panel of previously identified microRNAs associated with cardioprotection, we identified lower levels of miR-22-3p, miR-30b-5p, miR-90b-3p and miR-4732-3p in CTX iPSC-CMs under basal conditions. Our study provides valuable phenotype information for cellular models of cardiotoxicity and highlights the significance of using patient-derived cardiomyocytes for studying the associated pathogenic mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA