Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
J Am Chem Soc ; 145(46): 25463-25470, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37956314

RESUMEN

An aqueous electrochemically controlled host-guest encapsulation system demonstrates a large and synthetically tunable redox entropy change. Electrochemical entropy is the basis for thermally regenerative electrochemical cycles (TRECs), which utilize reversible electrochemical processes with large molar entropy changes for thermogalvanic waste-heat harvesting and electrochemical cooling, among other potential applications. A supramolecular host-guest system demonstrates a molar entropy change of 4 times that of the state-of-the-art aqueous TREC electrolyte potassium ferricyanide. Upon encapsulation of a guest, water molecules that structurally resemble amorphous ice are displaced from the host cavity, leveraging a change in the degrees of freedom and ordering of the solvent rather than the solvation of the redox-active species to increase entropy. The synthetic tunability of the host allows rational optimization of the system's ΔS, showing a range of -51 to -101 cal mol-1 K-1 (-2.2 to -4.4 mV K-1) depending on ligand and metal vertex modifications, demonstrating the potential for rational design of high-entropy electrolytes and a new strategy to overcome theoretical limits on ion solvation reorganization entropy.

2.
Proc Natl Acad Sci U S A ; 117(52): 32954-32961, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318176

RESUMEN

Water under nanoconfinement at ambient conditions has exhibited low-dimensional ice formation and liquid-solid phase transitions, but with structural and dynamical signatures that map onto known regions of water's phase diagram. Using terahertz (THz) absorption spectroscopy and ab initio molecular dynamics, we have investigated the ambient water confined in a supramolecular tetrahedral assembly, and determined that a dynamically distinct network of 9 ± 1 water molecules is present within the nanocavity of the host. The low-frequency absorption spectrum and theoretical analysis of the water in the Ga4L612- host demonstrate that the structure and dynamics of the encapsulated droplet is distinct from any known phase of water. A further inference is that the release of the highly unusual encapsulated water droplet creates a strong thermodynamic driver for the high-affinity binding of guests in aqueous solution for the Ga4L612- supramolecular construct.


Asunto(s)
Galio/química , Simulación de Dinámica Molecular , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos
3.
J Am Chem Soc ; 144(25): 11425-11433, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35700232

RESUMEN

A highly enantioselective aza-Darzens reaction (up to 99% ee) catalyzed by an enantiopure supramolecular host has been discovered. To understand the role of host structure on reaction outcome, nine new gallium(III)-based enantiopure supramolecular assemblies were prepared via substitution of the external chiral amide. Despite the distal nature of the substitution in these catalysts, changes in enantioselectivity (61 to 90% ee) in the aziridine product were observed. The enantioselectivities were correlated to the flexibility of the supramolecular host scaffold as measured by the kinetics of exchange of a model cationic guest. This correlation led to the development of a best-in-class catalyst by substituting the gallium(III)-based host with one based on indium(III), which generated the most flexible and selective catalyst.


Asunto(s)
Galio , Indio , Catálisis , Indio/química , Estructura Molecular , Estereoisomerismo
4.
J Am Chem Soc ; 144(25): 11413-11424, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35699585

RESUMEN

The results of quantum chemical and molecular dynamics calculations reveal that polyanionic gallium-based cages accelerate cyclization reactions of pentadienyl alcohols as a result of substrate cage interactions, preferential binding of reactive conformations of substrate/H3O+ pairs, and increased substrate basicity. However, the increase in basicity dominates. Experimental structure-activity relationship studies in which the metal vertices and overall charge of the cage are varied confirm the model derived via calculations.


Asunto(s)
Biomimética , Simulación de Dinámica Molecular , Aceleración , Ciclización , Conformación Molecular
5.
J Am Chem Soc ; 143(4): 2108-2114, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33471541

RESUMEN

Supramolecular catalysts emulate the mechanism of enzymes to achieve large rate accelerations and precise selectivity under mild and aqueous conditions. While significant strides have been made in the supramolecular host-promoted synthesis of small molecules, applications of this reactivity to chemoselective and site-selective modification of complex biomolecules remain virtually unexplored. We report here a supramolecular system where coencapsulation of pyridine-borane with a variety of molecules including enones, ketones, aldehydes, oximes, hydrazones, and imines effects efficient reductions under basic aqueous conditions. Upon subjecting unprotected lysine to the host-mediated reductive amination conditions, we observed excellent ε-selectivity, indicating that differential guest binding within the same molecule is possible without sacrificing reactivity. Inspired by the post-translational modification of complex biomolecules by enzymatic systems, we then applied this supramolecular reaction to the site-selective labeling of a single lysine residue in an 11-amino acid peptide chain and human insulin.


Asunto(s)
Boranos/química , Piridinas/química , Catálisis , Oxidación-Reducción
6.
J Am Chem Soc ; 142(45): 19327-19338, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33136406

RESUMEN

Although most of the currently developed supramolecular catalysts that emulate enzymatic reactivity with unique selectivity and activity through specific host-guest interactions work under homogeneous conditions, enzymes in nature can operate under heterogeneous conditions as membrane-bound enzymes. In order to develop such a heterogeneous system, an immobilized chiral supramolecular cluster Ga416 (2) was introduced into cross-linked polymers with cationic functionalities. These heterogeneous supramolecular catalysts were used in aza-Prins and aza-Cope reactions and successfully applied to continuous-flow reactions. They showed high durability and maintained high turnovers for long periods of time. In sharp contrast to the majority of examples of heterogenized homogeneous catalysts, the newly developed catalysts showed enhanced activity and robustness compared to those exhibited by the corresponding soluble cluster catalyst. An enantioenriched cluster was also immobilized to enable asymmetric catalysis, and activity and enantioselectivity of the supported chiral catalyst were maintained during recovery and reuse experiments and under a continuous-flow process. Significantly, the structure of the ammonium cations in the polymers affected stability, reactivity, and enantioselectivity, which is consistent with the hypothesis that the cationic moieties in the polymer support interact with cluster as an exohedral protecting shell, thereby influencing their catalytic performance.

7.
J Am Chem Soc ; 142(2): 733-737, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31909615

RESUMEN

It has been previously demonstrated that nanovessels can be highly competent catalysts providing high rate accelerations and unique selectivity to the organic transformations which they mediate. However, for supramolecular assemblies to be considered a standard reagent in organic synthesis they must first demonstrate the ability to catalyze increasingly complex transformations. Herein, we report a three-component Aza-Darzens reaction that generates N-phenylaziridines, catalyzed by a supramolecular host, that provides the stereoisomer opposite to the one generated in bulk solution (trans vs cis). This transformation constitutes a rare catalytic three-component coupling within a supramolecular assembly, providing a supramolecular solution to a synthetically challenging transformation.


Asunto(s)
Compuestos Aza/química , Catálisis , Estructura Molecular , Estereoisomerismo
8.
J Am Chem Soc ; 141(30): 11806-11810, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31310528

RESUMEN

Performing selective transformations on complex substrates remains a challenge in synthetic chemistry. These difficulties often arise due to cross-reactivity, particularly in the presence of similar functional groups at multiple sites. Therefore, there is a premium on the ability to perform selective activation of these functional groups. We report here a supramolecular strategy where encapsulation of a hydrogenation catalyst enables selective olefin hydrogenation, even in the presence of multiple sites of unsaturation. While the reaction requires at least one sterically nondemanding alkene substituent, the rate of hydrogenation is not sensitive to the distance between the alkene and the functional group, including a carboxylate, on the other substituent. This observation indicates that only the double bond has to be encapsulated to effect hydrogenation. Going further, we demonstrate that this supramolecular strategy can overcome the inherent allylic alcohol selectivity of the free catalyst, achieving supramolecular catalyst-directed regioselectivity as opposed to directing-group selectivity.


Asunto(s)
Alquenos/química , Compuestos Organometálicos/química , Rodio/química , Catálisis , Hidrogenación , Sustancias Macromoleculares/química , Estructura Molecular
9.
J Am Chem Soc ; 141(4): 1701-1706, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30667233

RESUMEN

Supramolecular hosts offer defined microenvironments that facilitate selective host-guest interactions, enabling reactivity that would otherwise be challenging in bulk solution. While impressive rate enhancements and selectivities have been reported, similar reactivity can often be accessed through modifications of reaction conditions even in the absence of the host. We report here an oxidative addition of aryl halides across the metal centers in Cu(I) and Pd(II) organometallics that is assisted by the presence of a supramolecular host, realized via electrostatic stabilization and increased local substrate concentrations. When reaction conditions were screened to assess background reactivity, alternative reactivity (typically decomposition) resulted, indicating that encapsulation led to host-selective reaction trajectories.


Asunto(s)
Benceno/química , Yodo/química , Compuestos Organometálicos/química , Cápsulas , Cobre/química , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Paladio/química
10.
J Am Chem Soc ; 141(28): 11071-11081, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31268312

RESUMEN

A series of highly luminescent europium(III) complexes which exhibit photoluminescence from the Eu(III) center following energy transfer from the UV absorbing organic sensitizer have been investigated using a combination of ultrafast optical transient absorption and Eu L3 X-ray transient absorption techniques. We have previously demonstrated that the latter can be used as a signature of 4f-4f excitation responsible for the photoluminescence in these Eu(III) coordination complexes, but the long time scale of the earlier measurements did not allow direct observation of the ligand-to-metal energy transfer step, preventing a determination of the sensitization mechanism. Here, we provide the first direct experimental verification that Dexter electron exchange from the ligand triplet state is the dominant energy transfer mechanism in these photoluminescent systems. Moreover, the optical transient absorption results obtained herein imply that energy transfer for all three compounds has near unity yield, regardless of differences in the sensitization efficiencies, suggesting that the variations in the sensitization efficiencies are determined almost entirely by differences in the ligand-centered intersystem crossing rates. The implications for the rational design of more effective photoluminescent lanthanide complexes are discussed.


Asunto(s)
Complejos de Coordinación/química , Europio/química , Sustancias Luminiscentes/química , Transferencia de Energía , Ligandos , Espectrofotometría Ultravioleta , Espectroscopía de Absorción de Rayos X
11.
Acc Chem Res ; 51(10): 2447-2455, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30272943

RESUMEN

The field of supramolecular chemistry has its foundation in molecular recognition and selective binding of guest molecules, often with remarkably strong binding affinities. The field evolved to leverage these favorable interactions between the host and its guest to catalyze simple, often biomimetic transformations. Drawing inspiration from these early studies, self-assembled supramolecular hosts continue to capture a significant amount of interest toward their development as catalysts for increasingly complex transformations. Nature often relies on microenvironments, derived from complex tertiary structures and a well-defined active site, to promote reactions with remarkable rate acceleration, substrate specificity, and product selectivity. Similarly, supramolecular chemists have become increasingly intrigued by the prospect that self-assembly of molecular components might generate defined and spatially segregated microenvironments that can catalyze complex transformations. Among the growing palette of supramolecular catalysts, an anionic, water-soluble, tetrahedral metal-ligand coordination host has found a range of applications in catalysis and beyond. Early work focused on characterizing and understanding this host and its various host-guest phenomena, which paved the path for exploiting these features to selectively promote desirable chemistries, including cyclizations, rearrangements, and bimolecular reactions. Although this early work matured into achievements of catalysis with dramatic rate accelerations as well as enantioenrichment, the afforded products were typically identical to those produced by background reactions that occurred outside of the host microenvironment. This Account describes our recent developments in the application of these anionic tetrahedral hosts as catalysts for organic and organometallic transformation. Inspiration from natural systems and unmet synthetic challenges led to supramolecular catalysis displaying unique divergences in reactivity to give products that are inaccessible from bulk solution. Additionally, these tetrahedral assemblies have been shown to catalyze a diverse range of transformations with notable rate acceleration over the uncatalyzed background reaction. The pursuit of complexity beyond supramolecular catalysis has since led to the integration of these tetrahedral catalysts in tandem with natural enzymes, as well as their application to dual catalysis to realize challenging synthetic reactions. Variation in the structure, including size and charge, of these tetrahedral catalysts has enabled recent studies that provide insights into connections between specific structural features of these hosts and their reactivities. These mechanistic studies reveal that the solvent exclusion properties, hydrophobic effects, confinement effects and electrostatic effects play important roles in the observed catalysis. Moreover, these features may be leveraged for the design of supramolecular catalysis beyond those described in this Account. Finally, the supramolecular chemistry detailed in this Account has presented the opportunity to emulate some of the mechanisms nature engages to achieve catalysis; however, this relationship need not be entirely unidirectional, as the examples describe herein can stand as simplified model systems for unravelling more complex biological processes.

12.
J Am Chem Soc ; 140(21): 6591-6595, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29767972

RESUMEN

We have demonstrated that the microenvironment of a highly anionic supramolecular catalyst can mimic the active sites of enzymes and impart rate accelerations of a million-fold or more. However, these microenvironments can be challenging to study, especially in the context of understanding which specific features of the catalyst are responsible for its high performance. We report here the development of an experimental mechanistic probe consisting of two isostructural catalysts. When examined in parallel transformations, the behavior of these catalysts provides insight relevant to the importance of anionic host charge on reactivity. These two catalysts exhibit similar host-substrate interactions, but feature a significant difference in overall anionic charge (12- and 8-). Within these systems, we compare the effect of constrictive binding in a net neutral aza-Cope rearrangement. We then demonstrate how the magnitude of anionic host charge has an exceptional influence on the reaction rates for a Nazarov cyclization, evidenced by an impressive 680-fold change in reaction rate as a consequence of a 33% reduction in catalyst charge.

13.
Proc Natl Acad Sci U S A ; 112(50): 15303-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26621709

RESUMEN

The mechanism of proton exchange in a metal-ligand enzyme active site mimic (compound 1) is described through amide hydrogen-deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual microenvironment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes.


Asunto(s)
Medición de Intercambio de Deuterio , Proteínas/química , Proteínas/metabolismo , Protones , Alanina/química , Alanina/metabolismo , Amidas/química , Enzimas/química , Enzimas/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Soluciones , Factores de Tiempo , Agua
14.
J Am Chem Soc ; 139(23): 8013-8021, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28581740

RESUMEN

This study offers a detailed mechanistic investigation of host-guest encapsulation behavior in a new enzyme-mimetic metal-ligand host and provides the first observation of a conformational selection mechanism (as opposed to induced fit) in a supramolecular system. The Ga4L4 host described features a C3-symmetric ligand motif with meta-substituted phenyl spacers, which enables the host to initially self-assemble into an S4-symmetric structure and then subsequently isomerize to a T-symmetric tetrahedron for better accommodation of a sufficiently large guest. Selective inversion recovery 1H NMR studies provide structural insights into the self-exchange behaviors of the host and the guest individually in this dynamic system. Kinetic analysis of the encapsulation-isomerization event revealed that increasing the concentration of guest inhibits the rate of host-guest relaxation, a key distinguishing feature of conformational selection. A comprehensive study of this simple enzyme mimic provides insight into analogous behavior in biophysics and enzymology and aims to inform the design of efficient self-assembled microenvironment catalysts.

15.
Chemistry ; 23(66): 16813-16818, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-28898458

RESUMEN

The supramolecular assembly [Ga4 L6 ]12- acts as a nanoscale flask to mediate the reactivity of encapsulated reactive guests and also functions as a catalyst to carry out enzyme-like chemical transformations. The guest binding to the interior cavity and exterior of this host is difficult to untangle because multiple equilibria occur in solution, and only when refining simultaneously data obtained from different techniques, such as NMR, UV/Vis, and calorimetry, can the accurate solution thermodynamics of these host-guest systems be determined. This study reports the driving forces for the inclusion and stepwise exterior guest binding of different aliphatic quaternary ammonium guests to the [Ga4 L6 ]12- assembly. Encapsulation into the host cavity was found to be an entropy-driven process, whereas exterior ion association is driven either by enthalpically favorable attractive forces or by the entropy gain due to desolvation, depending on guest size and character. The analysis of the energetics of reaction may help predicting and understanding the intimate role and contribution of the transition state in those rate-accelerated reactions involving this supramolecular assembly as an enzyme-like molecular flask.

16.
J Am Chem Soc ; 138(30): 9682-93, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27458778

RESUMEN

The scope and mechanism of the microenvironment-catalyzed C(sp(3))-C(sp(3)) reductive elimination from transition metal complexes [Au(III), Pt(IV)] is explored. Experiments detailing the effect of structural perturbation of neutral and anionic spectator ligands, reactive alkyl ligands, solvent, and catalyst structure are disclosed. Indirect evidence for a coordinatively unsaturated encapsulated cationic intermediate is garnered via observation of several inactive donor-arrested inclusion complexes, including a crystallographically characterized encapsulated Au(III) cation. Finally, based on stoichiometric experiments under catalytically relevant conditions, a detailed mechanism is outlined for the dual supramolecular and platinum-catalyzed C-C coupling between methyl iodide and tetramethyltin. Determination of major platinum species present under catalytic conditions and subsequent investigation of their chemistry reveals an unexpected interplay between cis-trans isomerism and the supramolecular catalyst in a Pt(II)/Pt(IV) cycle, as well as several off-cycle reactions.


Asunto(s)
Oro/química , Compuestos Organoplatinos/química , Catálisis , Hidrocarburos Yodados/química , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción
17.
Anal Chem ; 88(13): 6923-9, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27244346

RESUMEN

The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria.

18.
Acc Chem Res ; 48(9): 2496-505, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26332443

RESUMEN

This Account focuses on the coordination chemistry of the microbial iron chelators called siderophores. The initial research (early 1970s) focused on simple analogs of siderophores, which included hydroxamate, catecholate, or hydroxycarboxylate ligands. The subsequent work increasingly focused on the transport of siderophores and their microbial iron transport. Since these are pseudo-octahedral complexes often composed of bidentate ligands, there is chirality at the metal center that in principle is independent of the ligand chirality. It has been shown in many cases that chiral recognition of the complex occurs. Many techniques have been used to elucidate the iron uptake processes in both Gram-positive (single membrane) and Gram-negative (double membrane) bacteria. These have included the use of radioactive labels (of ligand, metal, or both), kinetically inert metal complexes, and Mössbauer spectroscopy. In general, siderophore recognition and transport involves receptors that recognize the metal chelate portion of the iron-siderophore complex. A second, to date less commonly found, mechanism called the siderophore shuttle involves the receptor binding an apo-siderophore. Since one of the primary ways that microbes compete with each other for iron stores is the strength of their competing siderophore complexes, it became important early on to characterize the solution thermodynamics of these species. Since the acidity of siderophores varies significantly, just the stability constant does not give a direct measure of the relative competitive strength of binding. For this reason, the pM value is compared. The pM, like pH, is a measure of the negative log of the free metal ion concentration, typically calculated at pH 7.4, and standard total concentrations of metal and ligand. The characterization of the electronic structure of ferric siderophores has done much to help explain the high stability of these complexes. A new chapter in siderophore science has emerged with the characterization of what are now called siderocalins. Initially found as a protein of the human innate immune system, these proteins bind both ferric and apo-siderophores to inactivate the siderophore transport system and hence deny iron to an invading pathogenic microbe. Siderocalins also can play a role in iron transport of the host, particularly in the early stages of fetal development. Finally, it is speculated that the molecular targets of siderocalins in different species differ based on the siderophore structures of the most important bacterial pathogens of those species.


Asunto(s)
Bacterias/metabolismo , Complejos de Coordinación/química , Hierro/metabolismo , Sideróforos/química , Bacterias/química , Transporte Biológico , Hierro/química , Modelos Biológicos
19.
Inorg Chem ; 55(1): 114-24, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26679038

RESUMEN

A series of 10 tetradentate 1-hydroxy-pyridin-2-one (1,2-HOPO) ligands and corresponding eight-coordinated photoluminescent Eu(III) and Sm(III) complexes were prepared. Generally, the ligands differ by the linear (nLI) aliphatic linker length, from 2 to 8 methylene units between the bidentate 1,2-HOPO chelator units. The photoluminescent quantum yields (Φtot) were found to vary with the linker length, and the same trend was observed for the Eu(III) and Sm(III) complexes. The 2LI and 5LI bridged complexes are the brightest (Φtotxε). The change in ligand wrapping pattern between 2LI and 5LI complexes observed by X-ray diffraction (XRD) is further supported by density functional theory (DFT) calculations. The bimodal Φtot trends of the Eu(III) and Sm(III) complexes are rationalized by the change in ligand wrapping pattern as the bridge (nLI) is increased in length.


Asunto(s)
Europio/química , Samario/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Ligandos , Luminiscencia , Espectroscopía de Protones por Resonancia Magnética , Soluciones , Agua/química
20.
Inorg Chem ; 55(20): 9989-10002, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27341328

RESUMEN

A tetravalent cerium macrocyclic complex (CeLK4) was prepared with an octadentate terephthalamide ligand comprised of hard catecholate donors and characterized in the solution state by spectrophotometric titrations and electrochemistry and in the crystal by X-ray diffraction. The solution-state studies showed that L exhibits a remarkably high affinity toward Ce4+, with log ß110 = 61(2) and ΔG = -348 kJ/mol, compared with log ß110 = 32.02(2) for the analogous Pr3+ complex. In addition, L exhibits an unusual preference for forming CeL4- relative to formation of the analogous actinide complex, ThL4-, which has ß110 = 53.7(5). The extreme stabilization of tetravalent cerium relative to its trivalent state is also evidenced by the shift of 1.91 V in the redox potential of the Ce3+/Ce4+ couple of the complex (measured at -0.454 V vs SHE). The unprecedented behavior prompted an electronic structure analysis using L3- and M5,4-edge X-ray absorption near-edge structure (XANES) spectroscopies and configuration interaction calculations, which showed that 4f-orbital bonding in CeLK4 has partial covalent character due to ligand-to-metal charge transfer (LMCT) in the ground state. The experimental results are presented in the context of earlier measurements on tetravalent cerium compounds, indicating that the amount of LMCT for CeLK4 is similar to that observed for [Et4N]2[CeCl6] and CeO2 and significantly less than that for the organometallic sandwich compound cerocene, (C8H8)2Ce. A simple model to rationalize changes in 4f orbital bonding for tri- and tetravalent lanthanide and actinide compounds is also provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA