Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Small ; : e2310431, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441366

RESUMEN

Innovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N2 ) to ammonia (NH3 ) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH3 production, electrochemical N2 reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCo2 S4 @MnO2 heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment. The urchin-like Sv-NiCo2 S4 @MnO2 heterostructures serve as cathodes, which demonstrate an optimal NH3 yield of 57.31 µg h-1  mgcat -1 and Faradaic efficiency of 20.55% at -0.2 V versus reversible hydrogen electrode (RHE) in basic electrolyte owing to the synergistic interactions between Sv-NiCo2 S4 and MnO2 . Density functional theory (DFT) simulation further verifies that Co-sites of urchin-like Sv-NiCo2 S4 @MnO2 heterostructures are beneficial to lowering the energy threshold for N2 adsorption and successive protonation. Distinctive micro/nano-architectures exhibit high NRR electrocatalytic activities that might motivate researchers to explore and concentrate on the development of heterostructures for ambient electrocatalytic NH3 generation.

2.
Mol Carcinog ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888206

RESUMEN

Flavonoids, constituting the most extensive category of polyphenols, founds in a variety of plants and comprise over 9000 compounds. Diosmetin, O-methylated flavone (3',5,7-trihydroxy-4'-methoxyflavone) of flavonoid aglycone diosmin have witnessed a significant surge in recent years. Many studies showed that flavonoids induced cytotoxicity in different organ specific cancer types. Thus, current review evaluates the anticancer potential of diosmetin and shed light on its mechanism of action such as cell cycle regulation, apoptosis via both intrinsic and extrinsic pathway, autophagy and tumour progression and metastasis. It also provides comprehensive analysis of different cancer targets and their role in breast, colon, hepatic, gliomas, leukemia, lung, prostate and skin cancer. Combination studies of diosmetin to improve drug sensitivity and reduce toxicity towards normal cells has been also discussed. Besides, in vitro studies, present review also discuss the anticancer potential of diosmetin on xenograft mice model. Different natural sources of diosmetin, limitations, pharmacokinetic analysis and toxicity study also summarized in current review. The emphasis on enhancing solubility and permeability for clinical utility has been thoroughly highlighted with particular attention given to the utilization of nano formulations to overcome existing barriers. At last, in-depth analysis of current challenges and a forward-looking perspective deliberated to address the existing gaps and position it as a promising lead compound for clinical applications in cancer treatment. This discussion is boosted by diosmetin's potential anticancer properties on different cancers, makes valuable candidates in the ongoing quest for effective therapeutic interventions against cancer.

3.
Chem Rec ; 24(4): e202300352, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501854

RESUMEN

Recently, carbon neutrality has been promoted as a potentially practical solution to global CO2 emissions and increasing energy-consumption challenges. Many attempts have been made to remove CO2 from the environment to address climate change and rising sea levels owing to anthropogenic CO2 emissions. Herein, membrane technology is proposed as a suitable solution for carbon neutrality. This review aims to comprehensively evaluate the currently available scientific research on membranes for carbon capture, focusing on innovative microporous material membranes used for CO2 separation and considering their material, chemical, and physical characteristics and permeability factors. Membranes from such materials comprise metal-organic frameworks, zeolites, silica, porous organic frameworks, and microporous polymers. The critical obstacles related to membrane design, growth, and CO2 capture and usage processes are summarized to establish novel membranes and strategies and accelerate their scaleup.

4.
Small ; 19(12): e2206176, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587971

RESUMEN

Electrolyte modulation and electrode structure design are two common strategies to suppress dendrites growth on Li metal anode. In this work, a self-adaptive electrode construction method to suppress Li dendrites growth is reported, which merges the merits of electrolyte modulation and electrode structure design strategies. In detail, negatively charged titania nanosheets with densely packed nanopores on them are prepared. These holey nanosheets in the electrolyte move spontaneously onto the anode under electrical field, building a mesoporous structure on the electrode surface. The as-formed porous electrode has large surface area with good lithiophilicity, which can efficiently transfer lithium ion (Li+ ) inside the electrode, and induce the genuine lithium plating/stripping. Moreover, the negative charges and nanopores on the sheets can also regulate the lithium-ion flux to promote uniform deposition of Li metal. As a result, the symmetric and full cells using the holey titania nanosheets containing electrolyte, show much better performance than the ones using electrolyte without holey nanosheets inside. This work points out a new route for the practical applications of Li-metal batteries.

5.
Small ; : e2309918, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084467

RESUMEN

Anode materials with high-rate performances and good electrochemical stabilities are urgently required for the grid-scale application of lithium-ion batteries (LIBs). Theoretically, transition metal borides are desirable candidates because of their appropriate working potentials and good conductivities. However, the reported metal borides exhibit poor performances owing to their lack of favorable Li+ storage sites and poor structural stabilities during long-term charging/discharging. In this work, a ternary alkali metal boride, Li1.2 Ni2.5 B2 , which displays a high Li+ storage capacity and remarkable electrochemical stability and an excellent rate performance is studied. In contrast to conventional transition metal borides, the introduction of Li atoms facilitates the formation of 1D Ni/B-based honeycomb channels during synthesis. This Ni/B framework successfully sustains the strain during Li+ intercalation and deintercalation, and thus, the optimized Li1.2 Ni2.5 B2 anode exhibits an excellent cycle stability over 500 charge/discharge cycles. This electrode also exhibits superior reversible capacities of 350, 183, and 80 mA h g-1 at 0.1, 1, and 5 A g-1 , respectively, indicating the considerable potential of the 1D Ni/B framework as a commercially available fast-charging LIB anode.

6.
Appl Environ Microbiol ; 89(2): e0203622, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744963

RESUMEN

The oomycete Pythium oligandrum is a soil-inhabiting parasite and predator of both fungi and oomycetes, and uses hydrolytic enzymes extensively to penetrate and hydrolyze its host or prey. Other mechanisms have been studied less, and we investigated the contribution of P. oligandrum-produced volatile organic compounds (VOCs) to parasitism. The growth-inhibiting activity of P. oligandrum VOCs was tested on Pythium myriotylum-a host or prey of P. oligandrum-coupled with electron microscopy, and biochemical and transcriptomic analyses. The P. oligandrum-produced VOCs reduced P. myriotylum growth by 80% and zoospore levels by 60%. Gas chromatography-mass spectrometry (GC-MS) identified 23 VOCs, and methyl heptenone, d-limonene, 2-undecanone, and 1-octanal were potent inhibitors of P. myriotylum growth and led to increased production of reactive oxygen species at a concentration that did not inhibit P. oligandrum growth. Exposure to the P. oligandrum VOCs led to shrinkage of P. myriotylum hyphae and lysis of the cellular membranes and organelles. Transcriptomics of P. myriotylum exposed to the P. oligandrum VOCs at increasing levels of growth inhibition initially showed a strong upregulation of putative detoxification-related genes that was not maintained later. The inhibition of P. myriotylum growth continued immediately after the exposure to the VOCs was discontinued and led to the reduced infection of its plant hosts. The VOCs produced by P. oligandrum could be another factor alongside hydrolytic enzymes contributing to its ecological role as a microbial parasite in particular ecological niches such as in soil, and may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations. IMPORTANCE Microbe-microbe interactions in nature are multifaceted, with multiple mechanisms of action, and are crucial to how plants interact with microbes. Volatile organic compounds (VOCs) have diverse functions, including contributing to parasitism in ecological interactions and potential applications in biocontrol. The microbial parasite P. oligandrum is well known for using hydrolytic enzymes as part of its parasitism. We found that P. oligandrum VOCs reduced the growth of, and caused major damage to, the hyphae of P. myriotylum (a host or prey of P. oligandrum). Transcriptomic analyses of P. myriotylum exposed to the VOCs revealed the upregulation of genes potentially involved in an attempt to detoxify the VOCs. The inhibitory effects of the VOCs had a knock-on effect by reducing the virulence of P. myriotylum toward its plant hosts. The P. oligandrum VOCs could contribute to its ecological role as a microbial parasite. The VOCs analyzed here may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations.


Asunto(s)
Pythium , Compuestos Orgánicos Volátiles , Pythium/genética , Compuestos Orgánicos Volátiles/farmacología , Hongos , Interacciones Microbianas , Suelo
7.
Chemistry ; 29(27): e202300250, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958938

RESUMEN

In this study, a highly air stable and eco-friendly methyl ammonium bismuth iodide (MA3 Bi2 I9 ) perovskite-like material has been prepared. After physiochemical characterizations, the synthesized MA3 Bi2 I9 was utilized as photo-catalyst towards hydrogen production. It is important to design and synthesize lead (Pb)-free perovskite-like material (MA3 Bi2 I9 ) for photo-catalytic hydrogen-production applications. The synthesized MA3 Bi2 I9 exhibits excellent photo-catalytic hydrogen generation with a production rate of 11.43 µmolg-1 h-1 . In the presence of a platinum co-catalyst, the hydrogen production rate further increases to 172.44 µmolg-1 h-1 . The MA3 Bi2 I9 photo-catalyst also demonstrates excellent cyclic stability.

8.
Phys Chem Chem Phys ; 25(3): 2439-2450, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598957

RESUMEN

The advancement of metal-catalyzed copolymers is a formidable challenge for achieving distinct catalytic properties to compete with existing plastic polymers in industrial commodities. Herein, we reveal the roles of electronic and steric environments in the thermodynamic preference of microstructures in ethylene/divinyl formal (DVF) co-polymerization using a Pd catalyst under mild conditions to accommodate the respective industrial applicabilities. The insertion products of DVF result in the alteration of the steric crowding, ultimately favoring the efficient formation of cyclic units having potential applications in the manufacture of high-strength fibers. More specifically, to achieve an improved yield of the end copolymer, we tuned the catalytic activity and regioselectivity through a variety of catalysts during ethylene-DVF co-polymerization. The naphthalene-bridged (P^O)PdMe catalyst was found to be promising in terms of the least hindered (buried volume of 47.8%) environment with the thermodynamic preference of 2,1-insertion with an energy of 5.1 kcal mol-1 among all the Pd-metal based catalysts. The highest activity with moderate energy barriers of the proposed catalyst will open new avenues for achieving a variety of potential applications, which is typically not possible using existing polymerization techniques.

9.
J Biochem Mol Toxicol ; 37(11): e23474, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37477197

RESUMEN

Flavonoids are among the largest groups of secondary metabolites. Studies suggest that dietary intake of flavonoids reduces the risk of cancer. 3,5,7-trihydroxyflavone (THF) belongs to the flavone class of flavonoids and potentially inhibits the growth of many cancers; however, it is unexplored in prostate cancer. This study reports the antiproliferative potential of THF in prostate cancer cell line via reactive oxygen species (ROS)-mediated cascades and examines the tumour reduction potential in swiss albino mice. The potency of THF was evaluated by employing cytotoxicity assays and wound healing assays. Cell cycle, ROS, mitochondrial membrane potential (MMP), and Annexin-V-FITC assay were performed using a flow cytometer. In vivo, anticancer potential was achieved using the mice Ehrlich Ascites Carcinoma (EAC) model. THF inhibits cell growth with IC50 of 64.30 µM (MTT), 81.22 µM (NRU) and 25.81 µM (SRB), substantiated by cell migration assay. Cell-cycle analysis revealed that THF increases the subdiploid population. Furthermore, the Annexin-V-FITC assay evoked a significant induction of late apoptosis at a higher concentration of THF. THF also disrupts MMP, caused by an increased generation of ROS. In the EAC model, THF significantly inhibits tumour growth and increases the percent survival of mice and ROS levels in EAC cells. Hence, it may be concluded that THF might execute its antiproliferative effect via inducing ROS generation and could be a promising lead for preclinical and clinical validations.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Masculino , Animales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Andrógenos , Fluoresceína-5-Isotiocianato , Próstata/metabolismo , Apoptosis , Proliferación Celular , Flavonoides/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Adenocarcinoma/tratamiento farmacológico , Anexinas , Línea Celular Tumoral
10.
Small ; 18(39): e2204236, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35988142

RESUMEN

The growth of ultrathin 1D inorganic nanomaterials with controlled diameters remains challenging by current synthetic approaches. A polymer chain templated method is developed to synthesize ultrathin Bi2 O2 CO3 nanotubes. This formation of nanotubes is a consequence of registry between the electrostatic absorption of functional groups on polymer template and the growth habit of Bi2 O2 CO3 . The bulk bismuth precursor is broken into nanoparticles and anchored onto the polymer chain periodically. These nanoparticles react with the functional groups and gradually evolve into Bi2 O2 CO3 nanotubes along the chain. 5.0 and 3.0 nm tubes with narrow diameter deviation are synthesized by using branched polyethyleneimine and polyvinylpyrrolidone as the templates, respectively. Such Bi2 O2 CO3 nanotubes show a decent lithium-ion storage capacity of around 600 mA h g-1 at 0.1 A g-1 after 500 cycles, higher than other reported bismuth oxide anode materials. More interestingly, the Bi materials developed herein still show decent capacity at very low temperatures, that is, around 330 mA h g-1 (-22 °C) and 170 mA h g-1 (-35 °C) after 75 cycles at 0.1 A g-1 , demonstrating their promising potential for practical application in extreme conditions.

11.
Molecules ; 27(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431879

RESUMEN

Synthesis of nanomaterials with specific morphology is an essential aspect for the optimisation of its properties and applications. The application of nanomaterials is being discussed in a wide range of areas, one of which is directly relevant to the environment through photocatalysis. To produce an effective photocatalyst for environmental applications, morphology plays an important role as it affects the surface area, interfaces, crystal facets and active sites, which ultimately affects efficiency. The method of synthesis and synthesis temperature can be the basic considerations for the evaluation of a particular nanomaterial. In this study, we have considered the aspects of morphology with a basic understanding and analyzed them in terms of nanomaterial efficacy in photocatalysis. Different morphologies of specific nanomaterials such as titanium dioxide, zinc oxide, silver phosphate, cadmium sulphide and zinc titanate have been discussed to come to reasonable conclusions. Morphologies such as nanorods, nanoflower, nanospindles, nanosheets, nanospheres and nanoparticles were compared within and outside the domain of given nanomaterials. The different synthesis strategies adopted for a specific morphology have been compared with the photocatalytic performance. It has been observed that nanomaterials with similar band gaps show different performances, which can be linked with the reaction conditions and their nanomorphology as well. Materials with similar morphological structures show different photocatalytic performances. TiO2 nanorods appear to have the best features of efficient photocatalyst, while the nanoflowers show very low efficiency. For CdS, the nanoflower is the best morphology for photocatalysis. It appears that high surface area is the key apart from the morphology, which controls the efficiency. The overall understanding by analyzing all the available information has enumerated a path to select an effective photocatalyst amongst the several nanomaterials available. Such an analysis and comparison is unique and has provided a handle to select the effective morphology of nanomaterials for photocatalytic applications.

12.
Nanotechnology ; 32(49)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399410

RESUMEN

Hydrogen has been considered as one of the most promising alternative energy source to solve the future energy demands due to its high energy capacity and emission-free character. The generation of hydrogen from non-fossil sources is necessary for the sustainable development of human life on this planet. The hydrolysis of sodium borohydride can quickly produce a large amount of hydrogenin situand on-demand in the presence of the catalyst, which can be used as an alternative energy source. So, it is crucial to fabricate the highly efficient, robust, and economical catalyst for the production of hydrogen via hydrolysis of sodium borohydride. Herein, a facile and efficient approach for the synthesis of metal-functionalized reduced graphene oxide for the production of hydrogen at room temperature was used. Moreover, the synthesized catalyst has also been tested in the field of environmental catalysis for the reduction of toxic 4-nitrophenol to valuable 4-aminophenol in the presence of sodium borohydride. The enhanced activity of prepared metal-functionalized reduced graphene oxide is ascribed to a strong affinity between Fe-NXand reduced graphene oxide which facilitates electron transfer as well as synergistic effect. Overall, this work presents a crucial procedure for green chemistry reactions when a carbonaceous material is selected as a catalyst.

13.
Environ Res ; 194: 110499, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33227248

RESUMEN

The excessive amount of textile effluents disposed into the water streams is a common source of contamination of the hydrosphere. To efficiently remove pollutants in water bodies, there is growing demand for highly efficient, cost effective, and green remediation techniques. In line with such demand, a heterostructured photocatalyst (ZnO-ZnTe) has been prepared through the assembly of zinc oxide (ZnO) and zinc telluride (ZnTe). A synergistic interaction between surface adsorption and photocatalysis was explored for the removal of azo dye using a hierarchical superstructure under solar-light irradiation. Methylene blue (MB) was bleached by about 91% under visible irradiation for 2 h to support the role of the prepared heterostructures as effective photocatalysts (QY is 3.16 × 10-7 molecules/photon). Moreover, the kinetic reaction rate of ZnO-ZnTe superstructures was 19.0 µmol g-1 h-1, which was 1.54 and 1.97 times higher than those of pristine ZnO and ZnTe, respectively. These results may be ascribed to the presence of a common cation that may have helped in the diffusion of photogenerated electrons between ZnO and ZnTe, while efficiently suppressing the recombination frequency of photogenerated electrons and holes.


Asunto(s)
Óxido de Zinc , Compuestos Azo , Catálisis , Azul de Metileno , Luz Solar
14.
Proc Biol Sci ; 287(1925): 20200403, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32290797

RESUMEN

Even though bacteria are important in determining plant growth and health via volatile organic compounds (VOCs), it is unclear how these beneficial effects emerge in multi-species microbiomes. Here we studied this using a model plant-bacteria system, where we manipulated bacterial community richness and composition and determined the subsequent effects on VOC production and VOC-mediated pathogen suppression and plant growth-promotion. We assembled VOC-producing bacterial communities in different richness levels ranging from one to 12 strains using three soil-dwelling bacterial genera (Bacillus, Paenibacillus and Pseudomonas) and investigated how the composition and richness of bacterial community affect the production and functioning of VOCs. We found that VOC production correlated positively with pathogen suppression and plant growth promotion and that all bacteria produced a diverse set of VOCs. However, while pathogen suppression was maximized at intermediate community richness levels when the relative amount and the number of VOCs were the highest, plant growth promotion was maximized at low richness levels and was only affected by the relative amount of plant growth-promoting VOCs. The contrasting effects of richness could be explained by differences in the amount and number of produced VOCs and by opposing effects of community productivity and evenness on pathogen suppression and plant-growth promotion along the richness gradient. Together, these results suggest that the number of interacting bacterial species and the structure of the rhizosphere microbiome drive the balance between VOC-mediated microbe-pathogen and microbe-plant interactions potentially affecting plant disease outcomes in natural and agricultural ecosystems.


Asunto(s)
Microbiota , Plantas/microbiología , Rizosfera , Microbiología del Suelo , Desarrollo de la Planta
15.
Pharmacol Res ; 161: 105202, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32942013

RESUMEN

To date, cancer is the second leading cause of death worldwide after cardiac arrest. A large number of synthetic drugs are available for the treatment of different types of cancer; however, a major problem associated with these drugs is its toxicity towards the normal cells. To overcome these problems, researchers explore plants derived phytochemicals because of their pleiotropic action and least toxicity towards the normal cells. Tangeretin is a polymethoxylated flavone found extensively in citrus fruits and has shown potent anti-cancer activity in different types of cancer cells. Hence, this review examines the anti-cancer activity of tangeretin via different molecular targets/pathways. Tangeretin induces apoptosis via intrinsic as well as extrinsic pathways and arrest the cell cycle. It also suppresses cell proliferation by modulating PI3K/AKT/mTOR, Notch, and MAPK signalling pathways. Besides, it induces autophagic cell death, suppresses migration, invasion, and angiogenesis. Further, the role of tangeretin in multi-drug resistance and combination therapy, different biological sources of tangeretin, its derivatives, and pharmacokinetics profile and toxicity studies are also discussed. Towards the end, the challenges associated with tangeretin usage as potential anti-cancer phytochemicals have also been discussed. Tangeretin, like a pandora's box, needs to be explored further, and more research is warranted to improve its usefulness for better human health.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavonas/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Flavonas/farmacocinética , Flavonas/toxicidad , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal
16.
Nanotechnology ; 31(32): 325603, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32320969

RESUMEN

A novel g-C3N4/Fe-ZnO/RGO nanocomposite has been synthesized using the facile solvothermal method to boost the catalytic efficiency of ZnO. The structure and morphology of nanocomposites were examined by a wide range of characterization methods. The obtained g-C3N4/Fe-ZnO/RGO nanocomposite (Z-scheme heterostructure) exhibits improved photocatalytic activity toward the photodegradation of MB, Cr (VI) under visible-light irradiation and 4-nitrophenol reduction. The enhancement in activity of nanocomposite is ascribed to a unique heterostructure system, which facilitates excellent transport and separation of the photogenerated charge carrier, resulting in prolonged lifetime leading to continuous generation of reactive species. Moreover, the synergistic effect on the interface of ZnO and g-C3N4 and the introduction of reduced graphene oxide (RGO) serve as a booster for charge separation at the Z-scheme, which ultimately speeds up the degradation of pollutants. The present study provides a novel and facile approach for establishing an efficient nanocomposite for environmental remediation.

17.
Rep Pract Oncol Radiother ; 25(2): 266-270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140084

RESUMEN

PURPOSE: The purpose of our study is to evaluate the challenges in identification of postoperative complexes (POC), the utility of clips in delineation of clinical target volume for boost in LABC downstaged with neoadjuvant chemotherapy (NACT) and to correlate this with patterns of recurrence. METHODS AND MATERIALS: LABC patients who underwent NACT followed by BCS and radiotherapy (2007-2014) were the subject of our analysis. The data on visibility and characteristics of postoperative cavity (POC), concordance of its volume with clip volume on radiation planning scan were retrieved. A 1 cm margin beyond POC was delineated as a clinical target volume (CTV). Postoperative whole breast and supraclavicular radiotherapy (50 Gy/25fractions/5wk or 42.4 Gy/16#/3 wk) followed by boost (10-16 Gy/5-8#/1-1.5wk) were delivered. Patterns of recurrence were evaluated. RESULTS: Out of 60 patients, 28.3% patients had stage II disease and 71.7% had stage III disease. 25% patients achieved pathological CR (complete response). The median POC volume was 30 cc and the median clip volume was 40 cc. The concordance of POC volume with clip volume was seen in 80%. Clips served as a good surrogate for POC in 80% of patients. At a median follow-up of 65 months (IQ range 32-84 months), and a lost to follow-up rate of 11.6 %, 3.3% (n = 2) patients had local recurrence (LR) and 8.3% (n = 5) had regional recurrence (LRR) in the supraclavicular region. CONCLUSIONS: Delineation of post NACT excision cavity as POC for boost radiotherapy is safe. Clips serve as a good surrogate for CTV delineation in 75% patients.

18.
Environ Res ; 168: 382-388, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30384232

RESUMEN

Industrialization and urbanization have produced a large amount of wastewater. Part of the municipal wastewater has been used as an irrigation source in urban/suburban areas. Its utilization, although economically beneficial, can significantly deteriorate the integrity of the ecological systems (e.g., in terms of quality of soil and resulting food products). The objectives of this study are to investigate the spatial distribution and bio-accumulation of heavy metals (e.g., Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) in food crops (and topsoil) and associated health risks of their consumption in the area of Mangla Dam, Pakistan. To this end, studies were conducted to assess the risk factors such as the bioconcentration factor (BCF), health risk index (HRI), and daily intake of heavy metals (DIM). Accordingly, there was more contamination in Mangla Dam water irrigated zone (DWI) than in the groundwater irrigated zone (GWI). Co exhibited the maximum BCF of 7.45 for Eruca sativa and 6.61 for Brassica campestris in the GWI zone. Likewise, enhanced risk to human health was seen from of Cd, Cr, and Pb in Triticum aestivum and Eruca sativa grown in the DWI zone. It is recommended that the quality profile of wastewater discharge into freshwater ecosystems should be continuously monitored and regulated.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Humanos , Pakistán , Medición de Riesgo , Aguas Residuales/química
19.
Microbiology (Reading) ; 163(4): 523-530, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28418289

RESUMEN

Rhizobacterial volatile organic compounds (VOCs) play an important role in the suppression of soil-borne phytopathogens. In this study, the VOCs produced by a soil-isolate, Bacillus subtilis FA26, were evaluated in vitro for their antibacterial activity against Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. The VOCs emitted by FA26 inhibited the growth of Cms significantly compared with the control. Scanning and transmission electron microscopy analyses revealed distorted colony morphology and a wide range of abnormalities in Cms cells exposed to the VOCs of FA26. Varying the inoculation strategy and inoculum size showed that the production and activity of the antibacterial VOCs of FA26 were dependent on the culture conditions. Headspace solid-phase microextraction/gas chromatography-mass spectrometry analyses revealed that FA26 produced 11 VOCs. Four VOCs (benzaldehyde, nonanal, benzothiazole and acetophenone) were associated with the antibacterial activity against Cms. The results suggested that the VOCs produced by FA26 could control the causal agent of bacterial ring rot of potato. This information will increase our understanding of the microbial interactions mediated by VOCs in nature and aid the development of safer strategies for controlling plant disease.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/metabolismo , Micrococcaceae/efectos de los fármacos , Micrococcaceae/ultraestructura , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Acetofenonas/metabolismo , Acetofenonas/farmacología , Aldehídos/metabolismo , Aldehídos/farmacología , Antibacterianos/biosíntesis , Benzaldehídos/metabolismo , Benzaldehídos/farmacología , Benzotiazoles/metabolismo , Benzotiazoles/farmacología , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Micrococcaceae/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Nodulación de la Raíz de la Planta/fisiología , Microbiología del Suelo , Solanum tuberosum/microbiología
20.
BMC Plant Biol ; 17(1): 133, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28768498

RESUMEN

BACKGROUND: Microbial volatiles play an expedient role in the agricultural ecological system by enhancing plant growth and inducing systemic resistance against plant pathogens, without causing hazardous effects on the environment. To explore the effects of VOCs of Ralstonia solanacearum TBBS1 (Rs) on tobacco plant growth and on plant growth promoting efficiency of VOCs produced by Bacillus subtilis SYST2, experiments were conducted both in vitro and in planta. RESULTS: The VOCs produced by SYST2 significantly enhanced the plant growth and induced the systemic resistance (ISR) against wilt pathogen Rs in all experiments. The SYST2-VOCs significantly increased PPO and PAL activity and over-expressed the genes relating to expansin, wilt resistance, and plant defense while repressed the genes relating to ethylene production. More interestingly, VOCs produced by pathogen, Rs had no significant effect on plant growth; however, Rs-VOCs decreased the growth promoting potential of SYST2-VOCs when plants were exposed to VOCs produced by both SYST2 and Rs. The co-culture of SYST2 and Rs revealed that they inhibited the growth of each other; however, the inhibition of Rs by SYST2-VOCs appeared to be greater than that of SYST2 by Rs-VOCs. CONCLUSION: Our findings provide new insights regarding the interaction among SYST2-VOCs, Rs-VOCs and plant, resulting in growth promotion and induced systemic resistance against the bacterial wilt pathogen Rs. This is the first report of the effect of VOCs produced by pathogenic microorganism on plant growth and on plant growth-promoting and systemic resistance-inducing potential of PGPR strain SYST2.


Asunto(s)
Bacillus subtilis/metabolismo , Nicotiana/crecimiento & desarrollo , Nicotiana/inmunología , Ralstonia solanacearum/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Albuterol/metabolismo , Glicoles de Propileno/metabolismo , Nicotiana/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA