Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 109(10): 1789-1813, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36152629

RESUMEN

Chromosome 16p11.2 reciprocal genomic disorder, resulting from recurrent copy-number variants (CNVs), involves intellectual disability, autism spectrum disorder (ASD), and schizophrenia, but the responsible mechanisms are not known. To systemically dissect molecular effects, we performed transcriptome profiling of 350 libraries from six tissues (cortex, cerebellum, striatum, liver, brown fat, and white fat) in mouse models harboring CNVs of the syntenic 7qF3 region, as well as cellular, transcriptional, and single-cell analyses in 54 isogenic neural stem cell, induced neuron, and cerebral organoid models of CRISPR-engineered 16p11.2 CNVs. Transcriptome-wide differentially expressed genes were largely tissue-, cell-type-, and dosage-specific, although more effects were shared between deletion and duplication and across tissue than expected by chance. The broadest effects were observed in the cerebellum (2,163 differentially expressed genes), and the greatest enrichments were associated with synaptic pathways in mouse cerebellum and human induced neurons. Pathway and co-expression analyses identified energy and RNA metabolism as shared processes and enrichment for ASD-associated, loss-of-function constraint, and fragile X messenger ribonucleoprotein target gene sets. Intriguingly, reciprocal 16p11.2 dosage changes resulted in consistent decrements in neurite and electrophysiological features, and single-cell profiling of organoids showed reciprocal alterations to the proportions of excitatory and inhibitory GABAergic neurons. Changes both in neuronal ratios and in gene expression in our organoid analyses point most directly to calretinin GABAergic inhibitory neurons and the excitatory/inhibitory balance as targets of disruption that might contribute to changes in neurodevelopmental and cognitive function in 16p11.2 carriers. Collectively, our data indicate the genomic disorder involves disruption of multiple contributing biological processes and that this disruption has relative impacts that are context specific.


Asunto(s)
Trastorno del Espectro Autista , Trastornos de los Cromosomas , Discapacidad Intelectual , Animales , Trastorno del Espectro Autista/genética , Calbindina 2/genética , Corteza Cerebral , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 16/genética , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Discapacidad Intelectual/genética , Ratones , Neuronas , ARN
3.
Hum Mol Genet ; 28(9): 1474-1486, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590535

RESUMEN

The 16p11.2 BP4-BP5 deletion and duplication syndromes are associated with a complex spectrum of neurodevelopmental phenotypes that includes developmental delay and autism spectrum disorder, with a reciprocal effect on head circumference, brain structure and body mass index. Mouse models of the 16p11.2 copy number variant have recapitulated some of the patient phenotypes, while studies in flies and zebrafish have uncovered several candidate contributory genes within the region, as well as complex genetic interactions. We evaluated one of these loci, KCTD13, by modeling haploinsufficiency and complete knockout in mice. In contrast to the zebrafish model, and in agreement with recent data, we found normal brain structure in heterozygous and homozygous mutants. However, recapitulating previously observed genetic interactions, we discovered sex-specific brain volumetric alterations in double heterozygous Kctd13xMvp and Kctd13xLat mice. Behavioral testing revealed a significant deficit in novel object recognition, novel location recognition and social transmission of food preference in Kctd13 mutants. These phenotypes were concomitant with a reduction in density of mature spines in the hippocampus, but potentially independent of RhoA abundance, which was unperturbed postnatally in our mutants. Furthermore, transcriptome analyses from cortex and hippocampus highlighted the dysregulation of pathways important in neurodevelopment, the most significant of which was synaptic formation. Together, these data suggest that KCTD13 contributes to the neurocognitive aspects of patients with the BP4-BP5 deletion, likely through genetic interactions with other loci.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Memoria a Corto Plazo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Animales , Conducta Animal , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Marcación de Gen , Sitios Genéticos , Genotipo , Masculino , Ratones , Ratones Noqueados , Fenotipo , Eliminación de Secuencia , Factores Sexuales
4.
Nucleic Acids Res ; 44(D1): D938-43, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26673713

RESUMEN

canSAR (http://cansar.icr.ac.uk) is a publicly available, multidisciplinary, cancer-focused knowledgebase developed to support cancer translational research and drug discovery. canSAR integrates genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and druggability data. canSAR is widely used to rapidly access information and help interpret experimental data in a translational and drug discovery context. Here we describe major enhancements to canSAR including new data, improved search and browsing capabilities, new disease and cancer cell line summaries and new and enhanced batch analysis tools.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Bases del Conocimiento , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Expresión Génica , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética
5.
Mol Autism ; 11(1): 45, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503625

RESUMEN

BACKGROUND: MBD5, encoding the methyl-CpG-binding domain 5 protein, has been proposed as a necessary and sufficient driver of the 2q23.1 microdeletion syndrome. De novo missense and protein-truncating variants from exome sequencing studies have directly implicated MBD5 in the etiology of autism spectrum disorder (ASD) and related neurodevelopmental disorders (NDDs). However, little is known concerning the specific function(s) of MBD5. METHODS: To gain insight into the complex interactions associated with alteration of MBD5 in individuals with ASD and related NDDs, we explored the transcriptional landscape of MBD5 haploinsufficiency across multiple mouse brain regions of a heterozygous hypomorphic Mbd5+/GT mouse model, and compared these results to CRISPR-mediated mutations of MBD5 in human iPSC-derived neuronal models. RESULTS: Gene expression analyses across three brain regions from Mbd5+/GT mice showed subtle transcriptional changes, with cortex displaying the most widespread changes following Mbd5 reduction, indicating context-dependent effects. Comparison with MBD5 reduction in human neuronal cells reinforced the context-dependence of gene expression changes due to MBD5 deficiency. Gene co-expression network analyses revealed gene clusters that were associated with reduced MBD5 expression and enriched for terms related to ciliary function. LIMITATIONS: These analyses included a limited number of mouse brain regions and neuronal models, and the effects of the gene knockdown are subtle. As such, these results will not reflect the full extent of MBD5 disruption across human brain regions during early neurodevelopment in ASD, or capture the diverse spectrum of cell-type-specific changes associated with MBD5 alterations. CONCLUSIONS: Our study points to modest and context-dependent transcriptional consequences of Mbd5 disruption in the brain. It also suggests a possible link between MBD5 and perturbations in ciliary function, which is an established pathogenic mechanism in developmental disorders and syndromes.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Neuronas/metabolismo , Transcripción Genética , Animales , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Línea Celular , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA