RESUMEN
Despite the increasing knowledge of the molecular events that induce the glycolysis pathway in effector T cells, very little is known about the transcriptional mechanisms that dampen the glycolysis program in quiescent cell populations such as memory T cells. Here we found that the transcription factor Bcl-6 directly repressed genes encoding molecules involved in the glycolysis pathway, including Slc2a1, Slc2a3, Pkm and Hk2, in type 1 helper T cells (TH1 cells) exposed to low concentrations of interleukin 2 (IL-2). Thus, Bcl-6 had a role opposing the IL-2-sensitive glycolytic transcriptional program that the transcription factors c-Myc and HIF-1α promote in effector T cells. Additionally, the TH1 lineage-specifying factor T-bet functionally antagonized the Bcl-6-dependent repression of genes encoding molecules in the glycolysis pathway, which links the molecular balance of these two factors to regulation of the metabolic gene program.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas de Unión al ADN/genética , Glucólisis/genética , Redes y Vías Metabólicas/genética , Animales , Western Blotting , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-2/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-6 , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
In contrast to the "helper" activities of most CD4+ T effector subsets, CD4+ cytotoxic T lymphocytes (CD4-CTLs) perform functions normally associated with CD8+ T and NK cells. Specifically, CD4-CTLs secrete cytotoxic molecules and directly target and kill compromised cells in an MHC class II-restricted fashion. The functions of these cells have been described in diverse immunological contexts, including their ability to provide protection during antiviral and antitumor responses, as well as being implicated in autoimmunity. Despite their significance to human health, the complete mechanisms that govern their programming remain unclear. In this article, we identify the Ikaros zinc finger transcription factor Eos (Ikzf4) as a positive regulator of CD4-CTL differentiation during murine immune responses against influenza virus infection. We find that the frequency of Eos+ cells is elevated in lung CD4-CTL populations and that the cytotoxic gene program is compromised in Eos-deficient CD4+ T cells. Consequently, we observe a reduced frequency and number of lung-residing, influenza virus-responsive CD4-CTLs in the absence of Eos. Mechanistically, we determine that this is due, at least in part, to reduced expression of IL-2 and IL-15 cytokine receptor subunits on the surface of Eos-deficient CD4+ T cells, both of which support the CD4-CTL program. Finally, we find that Aiolos, a related Ikaros family member and known CD4-CTL antagonist, represses Eos expression by antagonizing STAT5-dependent activation of the Ikzf4 promoter. Collectively, our findings reveal a mechanism wherein Eos and Aiolos act in opposition to regulate cytotoxic programming of CD4+ T cells.
Asunto(s)
Antineoplásicos , Linfocitos T CD4-Positivos , Ratones , Humanos , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Linfocitos T Citotóxicos , Diferenciación Celular , Citocinas/metabolismo , Antineoplásicos/metabolismoRESUMEN
Protein arginine methyltransferases (PRMTs) modify diverse protein targets and regulate numerous cellular processes; yet, their contributions to individual effector T cell responses during infections are incompletely understood. In this study, we identify PRMT5 as a critical regulator of CD4+ T follicular helper cell (Tfh) responses during influenza virus infection in mice. Conditional PRMT5 deletion in murine T cells results in an almost complete ablation of both Tfh and T follicular regulatory populations and, consequently, reduced B cell activation and influenza-specific Ab production. Supporting a potential mechanism, we observe elevated surface expression of IL-2Rα on non-T regulatory effector PRMT5-deficient T cells. Notably, IL-2 signaling is known to negatively impact Tfh differentiation. Collectively, our findings identify PRMT5 as a prominent regulator of Tfh programming, with potential causal links to IL-2 signaling.
Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Humanos , Ratones , Diferenciación Celular , Centro Germinal , Interleucina-2/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Células T Auxiliares FolicularesRESUMEN
Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.
Asunto(s)
Hidróxido de Aluminio , COVID-19 , Humanos , Animales , Ratones , Inmunidad Mucosa , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Inmunización , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
The Ikaros zinc-finger transcription factor Eos has largely been associated with sustaining the immunosuppressive functions of regulatory T cells. Paradoxically, Eos has more recently been implicated in promoting proinflammatory responses in the dysregulated setting of autoimmunity. However, the precise role of Eos in regulating the differentiation and function of effector CD4+ T cell subsets remains unclear. In this study, we find that Eos is a positive regulator of the differentiation of murine CD4+ TH2 cells, an effector population that has been implicated in both immunity against helminthic parasites and the induction of allergic asthma. Using murine in vitro TH2 polarization and an in vivo house dust mite asthma model, we find that EosKO T cells exhibit reduced expression of key TH2 transcription factors, effector cytokines, and cytokine receptors. Mechanistically, we find that the IL-2/STAT5 axis and its downstream TH2 gene targets are one of the most significantly downregulated pathways in Eos-deficient cells. Consistent with these observations, we find that Eos forms, to our knowledge, a novel complex with and supports the tyrosine phosphorylation of STAT5. Collectively, these data define a regulatory mechanism whereby Eos propagates STAT5 activity to facilitate TH2 cell differentiation.
Asunto(s)
Asma , Factor de Transcripción STAT5 , Ratones , Animales , Factor de Transcripción STAT5/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Células Th2RESUMEN
Ikaros zinc finger transcription factors are important regulators of the gene programs underlying the development of hematopoietic cell lineages. The family consists of five members: Ikaros, Helios, Aiolos, Eos, and Pegasus, which engage in both homo- and heterotypic intrafamilial interactions to exert diverse functional effects. Pioneering studies focused on the role of these factors in early lymphoid development, as their absence resulted in severe defects in lymphocyte populations. More recent work has now begun to define nuanced, stage-specific roles for Ikaros family members in the differentiation and function of mature T, B, and innate lymphoid cell populations including natural killer (NK) cells. The precise transcriptional mechanisms by which these factors function, both independently and collaboratively, is an area of active investigation. However, several key themes appear to be emerging regarding the pathways influenced by Ikaros family members, including the end-to-end regulation of cytokine signaling. Here, we review roles for Ikaros factors in lymphoid cell development, differentiation, and function, including a discussion of the current understanding of the transcriptional mechanisms they employ and considerations for the future study of this important transcription factor family.
Asunto(s)
Factor de Transcripción Ikaros , Inmunidad Innata , Diferenciación Celular , Factor de Transcripción Ikaros/genética , Células Asesinas Naturales , Dedos de ZincRESUMEN
CD4+ Th cells are responsible for orchestrating diverse, pathogen-specific immune responses through their differentiation into a number of subsets, including TH1, TH2, TH9, T follicular helper, T follicular regulatory, and regulatory T cells. The differentiation of each subset is guided by distinct regulatory requirements, including those derived from extracellular cytokine signals. IL-2 has emerged as a critical immunomodulatory cytokine that both positively and negatively affects the differentiation of individual Th cell subsets. IL-2 signals are propagated, in part, via activation of STAT5, which functions as a key regulator of CD4+ T cell gene programs. In this review, we discuss current understanding of the mechanisms that allow IL-2-STAT5 signaling to exert divergent effects across CD4+ T cell subsets and highlight specific roles for this pathway in the regulation of individual Th cell differentiation programs.
Asunto(s)
Interleucina-2/metabolismo , Factor de Transcripción STAT5/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos CD4/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Humanos , Activación de Linfocitos , Transducción de Señal , Balance Th1 - Th2RESUMEN
B cell lymphoma-6 (Bcl-6) is a transcriptional repressor that is required for the differentiation of T follicular helper (TFH) cell populations. Currently, the molecular mechanisms underlying the transcriptional regulation of Bcl-6 expression are unclear. In this study, we have identified the Ikaros zinc finger transcription factors Aiolos and Ikaros as novel regulators of Bcl-6. We found that increased expression of Bcl-6 in CD4+ Th cell populations correlated with enhanced enrichment of Aiolos and Ikaros at the Bcl6 promoter. Furthermore, overexpression of Aiolos or Ikaros, but not the related family member Eos, was sufficient to induce Bcl6 promoter activity. Intriguingly, STAT3, a known Bcl-6 transcriptional regulator, physically interacted with Aiolos to form a transcription factor complex capable of inducing the expression of Bcl6 and the TFH-associated cytokine receptor Il6ra Importantly, in vivo studies revealed that the expression of Aiolos was elevated in Ag-specific TFH cells compared with that observed in non-TFH effector Th cells generated in response to influenza infection. Collectively, these data describe a novel regulatory mechanism through which STAT3 and the Ikaros zinc finger transcription factors Aiolos and Ikaros cooperate to regulate Bcl-6 expression.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Factor de Transcripción Ikaros/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Factor de Transcripción STAT3/metabolismo , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Factor de Transcripción Ikaros/genética , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factor de Transcripción STAT3/genética , Linfocitos T Colaboradores-Inductores/metabolismo , Transactivadores/genética , Transactivadores/metabolismoRESUMEN
CD4+ T cells, or T helper cells, are critical mediators and coordinators of adaptive immunity. Unique effector T helper cell populations have been identified that perform distinct functions in response to pathogenic infection. The T follicular helper (Tfh) cells are one such subset, which has been identified as the primary T-cell population responsible for interacting with B cells to promote effective antibody-mediated immune responses. Since their initial description at the turn of the century, and subsequent classification as a distinct T helper cell subset, there has been substantial interest in elucidating the regulatory mechanisms that govern Tfh cell formation. The collective insight from this body of work has demonstrated that Tfh cell differentiation is a complex and multistage process regulated by a litany of cell-intrinsic and cell-extrinsic factors. As with the development of the other recognized T helper cell subsets, specific cytokines exercise prominent roles in both the positive and negative regulation of Tfh cell development. However, the exact composition of, and stage-specific requirements for, these environmental factors in the governance of Tfh cell differentiation remain incompletely understood. In this review, we summarize what is known regarding the role of cytokines in both the promotion and inhibition of Tfh cell differentiation and function.
Asunto(s)
Linfocitos B/inmunología , Reprogramación Celular , Citocinas/metabolismo , Inmunidad Celular , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Comunicación Celular , Diferenciación Celular , HumanosRESUMEN
Continuous interaction between chimeric antigen receptor (CAR) T cell (CART) and tumors often result in CART dysfunction and tumor escape. We observed that tumors can take up CAR molecules, leaving CARTs without surface-expressed CARs and thus unable to kill tumors after prolonged exposure. Overexpression of Rab5 resulted in augmented clathrin-independent endocytosis, preventing loss of surface-expressed CARs, and enhanced CART activity. Interestingly, we observed membrane protrusions on the CART cell surface which disappeared after multiple tumor challenges. Rab5 maintained these protrusions after repeated tumor engagements and their presence correlated with effective tumor clearance, suggesting a link between endocytosis, membrane protrusions, and cytolytic activity. In vivo , Rab5-expressing CARTs demonstrated improved activity and were able to clear an otherwise refractory mesothelin-expressing solid cancer in humanized mice by maintaining CAR surface expression within the tumor. Thus, pairing Rab5 with CAR expression could improve the clinical efficacy of CART therapy. Highlights "CAR-jacking" occurs when surface CAR is internalized by target tumor cells.Rab5 overexpression prevents "CAR-jacking" and enhances CART function.Rab5 promotes CAR endocytic recycling and maintains membrane protrusions.Rab5-expressing CARTs exhibit enhanced therapeutic efficacy against solid tumors.
RESUMEN
Introduction: Adjuvants added to subunit vaccines augment antigen-specific immune responses. One mechanism of adjuvant action is activation of pattern recognition receptors (PRRs) on innate immune cells. Bordetella colonization factor A (BcfA); an outer membrane protein with adjuvant function, activates TH1/TH17-polarized immune responses to protein antigens from Bordetella pertussis and SARS CoV-2. Unlike other adjuvants, BcfA does not elicit a TH2 response. Methods: To understand the mechanism of BcfA-driven TH1/TH17 vs. TH2 activation, we screened PRRs to identify pathways activated by BcfA. We then tested the role of this receptor in the BcfA-mediated activation of bone marrow-derived dendritic cells (BMDCs) using mice with germline deletion of TLR4 to quantify upregulation of costimulatory molecule expression and cytokine production in vitro and in vivo. Activity was also tested on human PBMCs. Results: PRR screening showed that BcfA activates antigen presenting cells through murine TLR4. BcfA-treated WT BMDCs upregulated expression of the costimulatory molecules CD40, CD80, and CD86 and produced IL-6, IL-12/23 p40, and TNF-α while TLR4 KO BMDCs were not activated. Furthermore, human PBMCs stimulated with BcfA produced IL-6. BcfA-stimulated murine BMDCs also exhibited increased uptake of the antigen DQ-OVA, supporting a role for BcfA in improving antigen presentation to T cells. BcfA further activated APCs in murine lungs. Using an in vitro TH cell polarization system, we found that BcfA-stimulated BMDC supernatant supported TFH and TH1 while suppressing TH2 gene programming. Conclusions: Overall, these data provide mechanistic understanding of how this novel adjuvant activates immune responses.
Asunto(s)
Adyuvantes Inmunológicos , Células TH1 , Células Th2 , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Ratones , Células TH1/inmunología , Células Th2/inmunología , Adyuvantes Inmunológicos/farmacología , Humanos , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Ratones Noqueados , Células Dendríticas/inmunología , Ratones Endogámicos C57BL , Células T Auxiliares Foliculares/inmunología , Citocinas/metabolismo , Activación de Linfocitos/inmunologíaRESUMEN
Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.
Asunto(s)
Dibenzodioxinas Policloradas , Pirazoles , Linfocitos T Reguladores , Animales , Ratones , Compuestos Azo , Dibenzodioxinas Policloradas/farmacología , AntiinflamatoriosRESUMEN
During intracellular infection, T follicular helper (TFH) and T helper 1 (TH1) cells promote humoral and cell-mediated responses, respectively. Another subset, CD4-cytotoxic T lymphocytes (CD4-CTLs), eliminate infected cells via functions typically associated with CD8+ T cells. The mechanisms underlying differentiation of these populations are incompletely understood. Here, we identify the transcription factor Aiolos as a reciprocal regulator of TFH and CD4-CTL programming. We find that Aiolos deficiency results in downregulation of key TFH transcription factors, and consequently reduced TFH differentiation and antibody production, during influenza virus infection. Conversely, CD4-CTL programming is elevated, including enhanced Eomes and cytolytic molecule expression. We further demonstrate that Aiolos deficiency allows for enhanced IL-2 sensitivity and increased STAT5 association with CD4-CTL gene targets, including Eomes, effector molecules, and IL2Ra. Thus, our collective findings identify Aiolos as a pivotal regulator of CD4-CTL and TFH programming and highlight its potential as a target for manipulating CD4+ T cell responses.
Asunto(s)
Linfocitos T Colaboradores-Inductores , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Diferenciación CelularRESUMEN
For over a decade, mutual antagonism between the transcriptional repressors Bcl-6 and Blimp-1 has been appreciated as a key mechanistic determinant of lymphoid differentiation programs. Now, in this issue of JEM, Ciucci et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20202343) demonstrate that this relationship is "central" to the generation of T cell memory.
Asunto(s)
Factores de TranscripciónRESUMEN
CD4+ T "helper" cells are key orchestrators of adaptive immune responses. Upon activation, naïve CD4+ T cells are capable of differentiating into a number of effector subsets that perform distinct immune functions. These subsets include T helper 1 (TH1), TH2, TH9, TH17, TH22, T follicular helper (TFH), and regulatory T cell (TREG) populations. The differentiation of these subsets is dependent, in large part, on the coordinated interplay between signals from the extracellular cytokine environment and downstream transcriptional networks. The use of in vitro T helper cell culture systems has been extensively employed to aid in the elucidation of the molecular mechanisms that govern the differentiation of each effector subset. Here, we provide a detailed summary of the differentiation conditions that are utilized to generate effector CD4+ T cell populations in vitro.
Asunto(s)
Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Subgrupos de Linfocitos T/citología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/citología , Animales , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Humanos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células TH1/citología , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/citología , Células Th2/inmunología , Células Th2/metabolismoRESUMEN
CD4+ T helper cells are capable of differentiating into a number of effector subsets that perform diverse functions during adaptive immune responses. The differentiation of each of these subsets is governed, in large part, by environmental cytokine signals and the subsequent activation of downstream, cell-intrinsic transcription factor networks. Ikaros zinc finger (IkZF) transcription factors are known regulators of immune cell development, including that of CD4+ T cell subsets. Over the past decade, members of the IkZF family have also been implicated in the differentiation and function of individual T helper cell subsets, including T helper 1 (TH1), TH2, TH17, T follicular (TFH), and T regulatory (TREG) cells. Now, an increasing body of literature suggests that the distinct cell-specific cytokine environments responsible for the development of each subset result in differential expression of IkZF factors across T helper populations. Intriguingly, recent studies suggest that IkZF members influence T helper subset differentiation in a feed-forward fashion through the regulation of these same cytokine-signaling pathways. Here, we review the increasingly prominent role for IkZF transcription factors in the differentiation of effector CD4+ T helper cell subsets.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Factor de Transcripción Ikaros/metabolismo , Inmunomodulación , Transducción de Señal , Dedos de Zinc , Animales , Linfocitos T CD4-Positivos/citología , Diferenciación Celular , Humanos , Factor de Transcripción Ikaros/genética , Factores de Transcripción STAT/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Listeria monocytogenes, a Gram-positive facultative intracellular pathogen, has been widely used as a model for studying the immune response. Here, we describe a protocol for the systemic infection of mice with L. monocytogenes, followed by isolation of lymphocytes from spleens and lymph nodes. We also include details on how to culture and store L. monocytogenes, as well as the specifics for fluorescence-activated cell sorting (FACS) for CD4+ cells in response to the systemic infection. This protocol can be adapted by changing the dosage of L. monocytogenes for a more or less aggressive infection and/or sorting for other immune cell subtypes of interest.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Listeria monocytogenes/inmunología , Listeria monocytogenes/patogenicidad , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Citometría de Flujo , Listeriosis/inmunología , Listeriosis/microbiología , RatonesRESUMEN
CD4+ T follicular helper (TFH) cells provide help to B cells and promote antibody-mediated immune responses. Increasing evidence supports the existence of TFH populations that secrete cytokines typically associated with the effector functions of other CD4+ T cell subsets. These include T helper 1 (TH1)-biased TFH (TFH1) cells that have recognized roles in both immune responses to pathogens and also the pathogenesis of autoimmune disease. Given their apparent importance to human health, there is interest in understanding the mechanisms that regulate TFH1 cell formation and function. However, their origin and the molecular requirements for their differentiation are unclear. Here, we describe a population of murine TH1-derived, TFH1-like cells that express the chemokine receptor Cxcr3 and produce both the TH1 cytokine interferon-γ and the TFH-associated cytokine interleukin-21 (IL-21). Furthermore, these TFH1-like cells promote B cell activation and antibody production at levels indistinguishable from conventional IL-6-derived TFH-like cells. Regarding their regulatory requirements, we find that IL-12 signaling is necessary for the differentiation and function of this TFH1-like cell population. Specifically, IL-12-dependent activation of STAT4, and unexpectedly STAT3, promotes increased expression of IL-21 and the TFH lineage-defining transcription factor Bcl-6 in TFH1-like cells. Taken together, these findings provide insight into the potential origin and differentiation requirements of TFH1 cells.
Asunto(s)
Interleucina-12/metabolismo , Transducción de Señal , Células TH1/fisiología , Animales , Diferenciación Celular , Citometría de Flujo , Regulación de la Expresión Génica , Interferón gamma/metabolismo , Interleucina-12/fisiología , Interleucinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT4/metabolismo , Células TH1/metabolismoRESUMEN
Autoantibody production by plasma cells (PCs) plays a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The molecular pathways by which B cells become pathogenic PC secreting autoantibodies in SLE are incompletely characterized. Histone deactylase 6 (HDAC6) is a unique cytoplasmic HDAC that modifies the interaction of a number of tubulin- associated proteins; inhibition of HDAC6 has been shown to be beneficial in murine models of SLE, but the downstream pathways accounting for the therapeutic benefit have not been clearly delineated. In the current study, we sought to determine whether selective HDAC6 inhibition would abrogate abnormal B cell activation in SLE. We treated NZB/W lupus mice with the selective HDAC6 inhibitor, ACY-738, for 4 weeks beginning at 20 weeks-of age. After only 4 weeks of treatment, manifestation of lupus nephritis (LN) were greatly reduced in these animals. We then used RNAseq to determine the genomic signatures of splenocytes from treated and untreated mice and applied computational cellular and pathway analysis to reveal multiple signaling events associated with B cell activation and differentiation in SLE that were modulated by HDAC6 inhibition. PC development was abrogated and germinal center (GC) formation was greatly reduced. When the HDAC6 inhibitor-treated lupus mouse gene signatures were compared to human lupus patient gene signatures, the results showed numerous immune, and inflammatory pathways increased in active human lupus were significantly decreased in the HDAC6 inhibitor treated animals. Pathway analysis suggested alterations in cellular metabolism might contribute to the normalization of lupus mouse spleen genomic signatures, and this was confirmed by direct measurement of the impact of the HDAC6 inhibitor on metabolic activities of murine spleen cells. Taken together, these studies show HDAC6 inhibition decreases B cell activation signaling pathways and reduces PC differentiation in SLE and suggest that a critical event might be modulation of cellular metabolism.
Asunto(s)
Linfocitos B/efectos de los fármacos , Centro Germinal/inmunología , Histona Desacetilasa 6/antagonistas & inhibidores , Ácidos Hidroxámicos/farmacología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Activación de Linfocitos/efectos de los fármacos , Pirimidinas/farmacología , Animales , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Femenino , Lupus Eritematoso Sistémico/inmunología , Ratones , Transducción de Señal/efectos de los fármacosRESUMEN
Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 µm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.