Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Transl Med ; 22(1): 627, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965566

RESUMEN

BACKGROUND: Post-exertional malaise (PEM), the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), represents a constellation of abnormal responses to physical, cognitive, and/or emotional exertion including profound fatigue, cognitive dysfunction, and exertion intolerance, among numerous other maladies. Two sequential cardiopulmonary exercise tests (2-d CPET) provide objective evidence of abnormal responses to exertion in ME/CFS but validated only in studies with small sample sizes. Further, translation of results to impairment status and approaches to symptom reduction are lacking. METHODS: Participants with ME/CFS (Canadian Criteria; n = 84) and sedentary controls (CTL; n = 71) completed two CPETs on a cycle ergometer separated by 24 h. Two-way repeated measures ANOVA compared CPET measures at rest, ventilatory/anaerobic threshold (VAT), and peak effort between phenotypes and CPETs. Intraclass correlations described stability of CPET measures across tests, and relevant objective CPET data indicated impairment status. A subset of case-control pairs (n = 55) matched for aerobic capacity, age, and sex, were also analyzed. RESULTS: Unlike CTL, ME/CFS failed to reproduce CPET-1 measures during CPET-2 with significant declines at peak exertion in work, exercise time, V ˙ e, V ˙ O2, V ˙ CO2, V ˙ T, HR, O2pulse, DBP, and RPP. Likewise, CPET-2 declines were observed at VAT for V ˙ e/ V ˙ CO2, PetCO2, O2pulse, work, V ˙ O2 and SBP. Perception of effort (RPE) exceeded maximum effort criteria for ME/CFS and CTL on both CPETs. Results were similar in matched pairs. Intraclass correlations revealed greater stability in CPET variables across test days in CTL compared to ME/CFS owing to CPET-2 declines in ME/CFS. Lastly, CPET-2 data signaled more severe impairment status for ME/CFS compared to CPET-1. CONCLUSIONS: Presently, this is the largest 2-d CPET study of ME/CFS to substantiate impaired recovery in ME/CFS following an exertional stressor. Abnormal post-exertional CPET responses persisted compared to CTL matched for aerobic capacity, indicating that fitness level does not predispose to exertion intolerance in ME/CFS. Moreover, contributions to exertion intolerance in ME/CFS by disrupted cardiac, pulmonary, and metabolic factors implicates autonomic nervous system dysregulation of blood flow and oxygen delivery for energy metabolism. The observable declines in post-exertional energy metabolism translate notably to a worsening of impairment status. Treatment considerations to address tangible reductions in physiological function are proffered. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov, retrospectively registered, ID# NCT04026425, date of registration: 2019-07-17.


Asunto(s)
Prueba de Esfuerzo , Síndrome de Fatiga Crónica , Consumo de Oxígeno , Humanos , Síndrome de Fatiga Crónica/fisiopatología , Síndrome de Fatiga Crónica/terapia , Femenino , Masculino , Adulto , Estudios de Casos y Controles , Persona de Mediana Edad , Umbral Anaerobio
2.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R176-R183, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047317

RESUMEN

Down syndrome (DS) is associated with congenital heart defects at birth, but cardiac function has not been assessed at older ages. We used the Ts65Dn mouse, a model of DS, to quantify heart structure and function with echocardiography in 18-mo male Ts65Dn and wild-type (WT) mice. Heart weight, nicotinamide adenine dinucleotide (NAD) signaling, and mitochondrial (citrate synthase) activity were investigated, as these pathways may be implicated in the cardiac pathology of DS. The left ventricle was smaller in Ts65Dn versus WT, as well as the anterior wall thickness of the left ventricle during both diastole (LVAW_d; mm) and systole (LVAW_s; mm) as assessed by echocardiography. Other functional metrics were similar between groups including left ventricular area end systole (mm2), left ventricular area end diastole (mm2), left ventricular diameter end systole (mm), left ventricular diameter end diastole (mm), isovolumetric relaxation time (ms), mitral valve atrial peak velocity (mm/s), mitral valve early peak velocity (mm/s), ratio of atrial and early peak velocities (E/A), heart rate (beats/min), ejection fraction (%), and fractional shortening (%). Nicotinamide phosphoribosyltransferase (NAMPT) protein expression, NAD concentration, and tissue weight were lower in the left ventricle of Ts65Dn versus WT mice. Sirtuin 3 (SIRT3) protein expression and citrate synthase activity were not different between groups. Although cardiac function was generally preserved in male Ts65Dn, the altered heart size and bioenergetic disturbances may contribute to differences in aging for DS.


Asunto(s)
NAD , Función Ventricular Izquierda , Masculino , Ratones , Animales , Función Ventricular Izquierda/fisiología , Citrato (si)-Sintasa , Diástole/fisiología , Ecocardiografía
3.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866573

RESUMEN

Oxidative stress resulting from decreased antioxidant protection and increased reactive oxygen and nitrogen species (RONS) production may contribute to muscle mass loss and dysfunction during aging. Curcumin is a phenolic compound shown to upregulate antioxidant defenses and directly quench RONS in vivo. This study determined the impact of prolonged dietary curcumin exposure on muscle mass and function of aged rats. Thirty-two-month-old male F344xBN rats were provided a diet with or without 0.2% curcumin for 4 months. The groups included: ad libitum control (CON; n = 18); 0.2% curcumin (CUR; n = 18); and pair-fed (PAIR; n = 18) rats. CUR rats showed lower food intake compared to CON, making PAIR a suitable comparison group. CUR rats displayed larger plantaris mass and force production (vs. PAIR). Nuclear fraction levels of nuclear factor erythroid-2 related-factor-2 were greater, and oxidative macromolecule damage was lower in CUR (vs. PAIR). There were no significant differences in measures of antioxidant status between any of the groups. No difference in any measure was observed between CUR and CON rats. Thus, consumption of curcumin coupled with reduced food intake imparted beneficial effects on aged skeletal muscle. The benefit of curcumin on aging skeletal muscle should be explored further.


Asunto(s)
Curcumina/administración & dosificación , Músculo Esquelético/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento , Animales , Curcumina/farmacología , Suplementos Dietéticos , Ingestión de Alimentos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Modelos Animales , Músculo Esquelético/fisiología , Estrés Oxidativo/efectos de los fármacos , Ratas
4.
Function (Oxf) ; 4(6): zqad058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954975

RESUMEN

Individuals with Down syndrome (Ds) are at increased risk of respiratory infection, aspiration pneumonia, and apnea. The Ts65Dn mouse is a commonly used model of Ds, but there have been no formal investigations of awake breathing and respiratory muscle function in these mice. We hypothesized that breathing would be impaired in Ts65Dn vs. wild-type (WT), and would be mediated by both neural and muscular inputs. Baseline minute ventilation was not different at 3, 6, or 12 mo of age. However, VT/Ti, a marker of the neural drive to breathe, was lower in Ts65Dn vs. WT and central apneas were more prevalent. The response to breathing hypoxia was not different, but the response to hypercapnia was attenuated, revealing a difference in carbon dioxide sensing, and/or motor output in Ts65Dn. Oxygen desaturations were present in room air, demonstrating that ventilation may not be sufficient to maintain adequate oxygen saturation in Ts65Dn. We observed no differences in arterial PO2 or PCO2, but Ts65Dn had lower hemoglobin and hematocrit. A retrospective medical record review of 52,346 Ds and 52,346 controls confirmed an elevated relative risk of anemia in Ds. We also performed eupneic in-vivo electromyography and in-vitro muscle function and histological fiber typing of the diaphragm, and found no difference between strains. Overall, conscious respiration is impaired in Ts65Dn, is mediated by neural mechanisms, and results in reduced hemoglobin saturation. Oxygen carrying capacity is reduced in Ts65Dn vs. WT, and we demonstrate that individuals with Ds are also at increased risk of anemia.


Asunto(s)
Anemia , Síndrome de Down , Ratones , Animales , Oxígeno , Síndrome de Down/genética , Estudios Retrospectivos , Conservación de los Recursos Naturales , Respiración , Hemoglobinas
5.
J Vis Exp ; (158)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32420981

RESUMEN

Unrestrained barometric plethysmography (UBP) is a method for quantifying the pattern of breathing in mice, where breathing frequency, tidal volume, and minute ventilation are routinely reported. Moreover, information can be collected regarding the neural output of breathing, including the existence of central apneas and augmented breaths. An important consideration for UBP is obtaining a breathing segment with a minimal impact of anxious or active behaviors, to elucidate the response to breathing challenges. Here, we present a protocol that allows for short, quiet baselines to be obtained in aged mice, comparable to waiting for longer bouts of quiet breathing. The use of shorter time segments is valuable, as some strains of mice may be increasingly excitable or anxious, and longer periods of quiet breathing may not be achieved within a reasonable timeframe. We placed 22 month-old mice in a UBP chamber and compared four 15 s quiet breathing segments between minutes 60-120 to a longer 10 min quiet breathing period that took 2-3 h to acquire. We also obtained counts of central apneas and augmented breaths prior to the quiet breathing segments, following a 30 min familiarization period. We show that 10 min of quiet breathing is comparable to using a much shorter 15 s duration. Additionally, the time leading up to these 15 s quiet breathing segments can be used to gather data regarding apneas of central origin. This protocol allows investigators to collect pattern-of-breathing data in a set amount of time and makes quiet baseline measures feasible for mice that may exhibit increased amounts of excitable behavior. The UBP methodology itself provides a useful and noninvasive way to collect pattern-of-breathing data and allows for mice to be tested over several time points.


Asunto(s)
Pletismografía/métodos , Respiración/inmunología , Animales , Masculino , Ratones
6.
Physiol Rep ; 7(17): e14205, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31496136

RESUMEN

Down syndrome (Ds) is the most common chromosomal cause of intellectual disability that results from triplication of chromosome 21 genes. Lower blood pressure (BP) and heart rate (HR) in response to exercise and other stressors are prevalent in Ds, and are mediated by autonomic dysfunction. The Ts65Dn mouse is a model of Ds that is commonly used in preclinical studies, but has not been formally investigated for cardiovascular responses in conscious mice. Based on human studies of Ds, we hypothesized Ts65Dn would have lower BP and HR, but similar arterial stiffness. BP was quantified in conscious wild-type (WT) and Ts65Dn. A main effect for strain was observed for all BP measures (systolic, diastolic, mean, pulse pressure), with WT higher than Ts65Dn. Pulse wave velocity was similar between WT and Ts65Dn. High-frequency power spectra was higher in WT suggesting autonomic differences between strains. Freely moving HR was higher in WT versus Ts65Dn in both the dark and light cycles, although a main effect of circadian cycle was also present (dark> light). Similar to what is observed in humans, Ts65Dn has a lower BP which may be attributed to autonomic differences and result in preservation of arterial function with advancing age. Ts65Dn thus appears to capture the Ds cardiovascular phenotype across the lifespan. These data support further use of Ts65Dn to investigate mechanisms that may lead to altered BP and HR responses in Ds.


Asunto(s)
Presión Sanguínea , Síndrome de Down/fisiopatología , Frecuencia Cardíaca , Animales , Sistema Nervioso Autónomo/fisiopatología , Ritmo Circadiano , Síndrome de Down/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Rigidez Vascular
7.
Physiol Rep ; 7(8): e14060, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31004390

RESUMEN

Unrestrained barometric plethysmography is a common method used for characterizing breathing patterns in small animals. One source of variation between unrestrained barometric plethysmography studies is the segment of baseline. Baseline may be analyzed as a predetermined time-point, or using tailored segments when each animal is visually calm. We compared a quiet, minimally active (no sniffing/grooming) breathing segment to a predetermined time-point at 1 h for baseline measurements in young and middle-aged mice during the dark and light cycles. Additionally, we evaluated the magnitude of change for gas challenges based on these two baseline segments. C57BL/6JEiJ x C3Sn.BliA-Pde6b+ /DnJ male mice underwent unrestrained barometric plethysmography with the following baselines used to determine breathing frequency, tidal volume (VT) and minute ventilation (VE): (1) 30-sec of quiet breathing and (2) a 10-min period from 50 to 60 min. Animals were also exposed to 10 min of hypoxic (10% O2 , balanced N2 ), hypercapnic (5% CO2 , balanced air) and hypoxic hypercapnic (10% O2 , 5% CO2 , balanced N2 ) gas. Both frequency and VE were higher during the predetermined 10-min baseline versus the 30-sec baseline, while VT was lower (P < 0.05). However, VE/VO2 was similar between the baseline time segments (P > 0.05) in an analysis of one cohort. During baseline, dark cycle testing had increased VT values versus those in the light (P < 0.05). For gas challenges, both frequency and VE showed higher percent change from the 30-sec baseline compared to the predetermined 10-min baseline (P < 0.05), while VT showed a greater change from the 10-min baseline (P < 0.05). Dark cycle hypoxic exposure resulted in larger percent change in breathing frequency versus the light cycle (P < 0.05). Overall, light and dark cycle pattern of breathing differences emerged along with differences between the 30-sec behavior observational method versus a predetermined time segment for baseline.


Asunto(s)
Envejecimiento/fisiología , Ritmo Circadiano , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Respiración , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Respir Physiol Neurobiol ; 264: 8-11, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30904671

RESUMEN

Capsaicin is an agonist for transient receptor potential vanilloid 1 (TRPV1), and acute injection results in an increased frequency and tidal volume in young rats. It is unknown how capsaicin influences breathing in aged mice. We tested the hypothesis that capsaicin supplementation would elicit an augmented pattern of breathing in old mice compared to controls. Male 22-month old C57BL/6 J mice consumed a diet containing capsaicin (50 ppm) or lecithin control for one month. Breathing patterns were obtained prior to/following the dietary supplementation period using unrestrained barometric plethysmography. Frequency, tidal volume (VT), minute ventilation (VE), VE to expelled carbon dioxide ratio (VE/VCO2) and VT divided by inspiratory time (VT/Ti) were analyzed at baseline and during a 15-minute hypoxic exposure (10% O2). Capsaicin supplemented mice showed greater VE, VE/VCO2 and TV/Ti during hypoxic exposure compared to controls, with no change at baseline. Overall, these findings suggest an acute augmented response to hypoxia following capsaicin administration in older mice.


Asunto(s)
Capsaicina/farmacología , Hipoxia/fisiopatología , Frecuencia Respiratoria/efectos de los fármacos , Frecuencia Respiratoria/fisiología , Canales Catiónicos TRPV/agonistas , Animales , Capsaicina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Pletismografía , Volumen de Ventilación Pulmonar/efectos de los fármacos , Volumen de Ventilación Pulmonar/fisiología
9.
J Appl Physiol (1985) ; 126(4): 799-809, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30653415

RESUMEN

Excessive iron loading may cause skeletal muscle atrophy and weakness because of its free radical generating properties. To determine whether a clinically relevant degree of iron loading impairs skeletal muscle function, young male mice received injections of iron dextran (4 mg iron/200 µl) or 2 mM d-glucose (control) 5 days/week for 2 weeks ( n = 10/group). Systemic iron loading induced an approximate fourfold increase in the skeletal muscle nonheme iron concentration. Soleus specific tension (1, 30-250 Hz) was lower among iron-loaded animals compared with controls despite similar body mass and muscle mass. Soleus lipid peroxidation (4-hydroxynonenal adducts) and protein oxidation (protein carbonyls) levels were similar between groups. In gastrocnemius muscle, reduced glutathione (GSH) and glutathione peroxidase activity were similar but glutathione disulfide (GSSG) and the GSSG/GSH ratio were greater in iron-loaded muscle. A greater protein expression level of endogenous thiol antioxidant thioredoxin (TRX) was observed among iron-loaded muscle whereas its endogenous inhibitor thioredoxin-interacting protein (TXNip) and the TRX/TXNip ratio were similar. Glutaredoxin2, a thiol-disulfide oxidoreductase activated by GSSG-induced destabilization of its iron-sulfur [2Fe-2S] cluster, was lower following iron loading. Additionally, protein levels of α-actinin and αII-spectrin at 240 kDa were lower in the iron-loaded group. Ryanodine receptor stabilizing subunit calstabin1 was also lower following iron loading. In summary, the contractile dysfunction that resulted from moderate iron loading may be mediated by a disturbance in the muscle redox balance and from changes arising from an increased proteolytic response and aberrant sarcoplasmic reticulum Ca2+ release. NEW & NOTEWORTHY Although severe iron loading is known to cause muscle oxidative stress and dysfunction, the effects of a moderate degree of systemic iron loading on muscle contractile function and biochemical responses remain unclear. This study demonstrates that a pathophysiological elevation in the skeletal muscle iron load leads to force deficits that coincide with impaired redox status, structural integrity, and lower ryanodine receptor-associated calstabin1 in the absence of muscle mass changes or oxidative damage.


Asunto(s)
Hierro/farmacología , Músculo Esquelético/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Glutatión/metabolismo , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Tiorredoxinas/metabolismo
10.
Physiol Rep ; 6(10): e13702, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29845772

RESUMEN

Saline (0.9% NaCl) is used in clinical and research settings as a vehicle for intravenous drug administration. While saline is a standard control in mouse studies, there are reports of hyperchloremic metabolic acidosis in high doses. It remains unknown if metabolic acidosis occurs in mice and/or if compensatory increases in breathing frequency and tidal volume accompany saline administration. It was hypothesized that saline administration alters blood pH and the pattern of breathing in conscious CD-1 male mice exposed to air or hypoxia (10% O2 , balanced N2 ). Unrestrained barometric plethysmography was used to quantify breathing frequency (breaths/min; bpm), tidal volume (VT; mL/breath/10 g body weight (BW)), and minute ventilation (VE; mL/min/10 g BW) in two designs: (1) 11-week-old mice with no saline exposure (n = 11) compared to mice with 7 days of 0.9% saline administration (intraperitoneal, i.p.; 10 mL/kg body mass; n = 6). and (2) 17-week-old mice tested before (PRE) and after 1 day (POST1, n = 6) or 7 days (POST7, n = 5) of saline (i.p.; 10 mL/kg body mass). There were no differences when comparing frequency, VT, or VE between groups for either design with room air or hypoxia exposures. Hypoxia increased frequency, VT, and VE compared to room air. Moreover, conscious blood sampling showed no differences in pH, paCO2 , paO2 , or HCO3- in mice without or with 7 days of saline. These findings reveal no differences in ventilation following 1 and/or 7 days of saline administration in mice. Therefore, the use of 0.9% saline as a control is supported for studies evaluating the control of breathing in mice.


Asunto(s)
Ventilación Pulmonar/efectos de los fármacos , Respiración/efectos de los fármacos , Solución Salina/administración & dosificación , Acidosis/sangre , Acidosis/inducido químicamente , Administración Intravenosa/efectos adversos , Animales , Peso Corporal/efectos de los fármacos , Masculino , Ratones , Volumen de Ventilación Pulmonar/efectos de los fármacos
11.
J Appl Physiol (1985) ; 125(6): 1749-1759, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30284518

RESUMEN

Isoflurane (ISO) is a commonly used anesthetic that offers rapid recovery for laboratory animal research. Initial studies indicated no difference in arterial Pco2 ( PaCO2 ) or pH between conscious (NO ISO) and 1% ISO-exposed CD-1 mice. Our laboratory investigated whether arterial blood sampling with 1% ISO is a suitable alternative to NO ISO sampling for monitoring ventilation in a commonly studied mouse strain. We hypothesized similar blood chemistry, breathing patterns, and cardiovascular responses with NO ISO and 1% ISO. C57BL/6J mice underwent unrestrained barometric plethysmography to quantify the pattern of breathing. Mice exposed to hypoxic and hypercapnic gas under 1% ISO displayed blunted responses; with air, there were no breathing differences. Blood pressure and heart rate were not different between NO ISO and 1% ISO-exposed mice breathing air. Oxygen saturation was not different between groups receiving 2% ISO, 1% ISO, or air. Breathing frequency stabilized at ~11 min of 1% ISO following 2% ISO exposure, suggesting that 11 min is the optimal time for a sample in C57BL/6J mice. Blood samples at 1% ISO and NO ISO revealed no differences in blood pH and PaCO2 in C57BL/6J mice. Overall, this method reveals similar arterial blood sampling values in awake and 1% ISO CD-1 and C57BL/6J mice exposed to air. Although this protocol may be appropriate in other mouse strains when a conscious sample is not feasible, caution is warranted first to identify breathing frequency responses at 1% ISO to tailor the protocol. NEW & NOTEWORTHY Conscious arterial blood sampling is influenced by extraneous factors and is a challenging method due to the small size of mice. Through a series of experiments, we show that arterial blood sampling with 1% isoflurane (ISO) is an alternative to awake sampling in C57BL/6J and CD-1 male mice breathing air. Monitoring breathing frequency during 1% ISO is important to the protocol and should be closely followed to confirm adequate recovery after the catheter implantation.


Asunto(s)
Anestésicos por Inhalación , Recolección de Muestras de Sangre/métodos , Arteria Femoral/cirugía , Isoflurano , Vigilia , Animales , Presión Sanguínea , Frecuencia Cardíaca , Masculino , Ratones Endogámicos C57BL , Oximetría , Respiración
12.
Respir Physiol Neurobiol ; 258: 82-85, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29886246

RESUMEN

The hindlimb casting model was developed to study skeletal muscle reloading following a period of unloading. It is unknown if ventilation parameters of mice are affected by the casting model. We tested the hypothesis that hindlimb casted mice have similar ventilatory patterns compared to mice with the casts removed. Male CD-1 mice underwent 14 days of hindlimb immobilization via plaster casting. Breathing parameters were obtained utilizing unrestrained barometric plethysmography (UBP). Breathing traces were analyzed with Ponemah software for breathing frequency, tidal volume (TV), and minute ventilation (MV). Frequency, TV and MV did not show any differences in quiet breathing patterns during or post-casting in mice. Thus, the hindlimb casting model does not complicate breathing during and after casting and should not interfere with the unloading and reloading of skeletal muscle.


Asunto(s)
Suspensión Trasera/efectos adversos , Atrofia Muscular/complicaciones , Atrofia Muscular/etiología , Respiración , Animales , Peso Corporal , Modelos Animales de Enfermedad , Masculino , Ratones , Pletismografía , Volumen de Ventilación Pulmonar/fisiología
13.
Appl Physiol Nutr Metab ; 43(2): 165-173, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29024598

RESUMEN

Aging skeletal muscle displays an altered iron status that may promote oxidative stress and sarcopenia. A diet containing low iron (LI) could reduce muscle iron status and attenuate age-related muscle atrophy. Supplemental branched-chain amino acids (BCAA) may also alleviate sarcopenia by promoting muscle protein synthesis and iron status improvement. This study examined individual and combined effects of LI and BCAA diets on anabolic signaling and iron status in skeletal muscle of aging rats. Twenty-nine-month-old male Fisher 344 × Brown Norway rats consumed the following control-base diets: control + regular iron (35 mg iron/kg) (CR; n = 11); control + LI (∼6 mg iron/kg) (CL; n = 11); 2×BCAA + regular iron (BR; n = 10); and 2×BCAA + LI (BL; n = 12) for 12 weeks. Although LI and/or 2×BCAA did not affect plantaris muscle mass, 2×BCAA groups showed lower muscle iron content than did CR and CL groups (P < 0.05). p70 ribosomal protein S6 kinase phosphorylation was greater in 2×BCAA and LI animals compared with CR animals (P < 0.05). Interactions between IRON and BCAA were observed for proteins indicative of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1 alpha) and oxidative capacity (cytochrome c oxidase subunit 2 and citrate synthase) (P < 0.05) wherein the combined diet (BL) negated potential benefits of individual diets. Antioxidant capacity, superoxide dismutase activity, and oxidative injury (3-nitrotyrosine, protein carbonyls, and 4-hydroxynonenal) were similar between groups. In conclusion, 12 weeks of LI and 2×BCAA diets showed significant impacts on increasing anabolic signaling as well as ameliorating iron status; however, these interventions did not affect muscle mass.


Asunto(s)
Envejecimiento/efectos de los fármacos , Aminoácidos de Cadena Ramificada/administración & dosificación , Hierro/administración & dosificación , Músculo Esquelético/efectos de los fármacos , Animales , Dieta , Suplementos Dietéticos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Carbonilación Proteica , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344 , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Superóxido Dismutasa/metabolismo
14.
J Hypertens ; 36(8): 1743-1752, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29677054

RESUMEN

OBJECTIVES: Stiffer central arteries, as seen in hypertension (HTN), foster transmission of pulsatile hemodynamics into fragile cerebral vessels. Aerobic exercise is recommended for adults with HTN, but its effects on arterial stiffness and pulsatility in this group are unclear. This study sought to investigate the effect of acute aerobic exercise on arterial stiffness and cerebrovascular pulsatility in 30 adults with treated HTN and 30 age, sex, and BMI-matched adults without HTN (56 ±â€Š6 years, BMI 28.2 ±â€Š2.9 kg/m; 28 women). METHODS: Patients underwent hemodynamic measures before/after 30-min cycling (≈55% peak oxygen consumption). Aortic stiffness was measured using carotid-femoral pulse wave velocity, and carotid artery stiffness was assessed with ß-stiffness via ultrasound. Aortic/carotid pulse pressure (aortic via radial generalized transfer function) was measured by tonometry and calibrated to brachial mean pressure and diastolic pressure. Carotid/middle cerebral artery (MCA) blood velocity pulsatility indices were measured using Doppler. Carotid wave intensity analysis was used to derive forward wave intensity (W1). RESULTS: Exercise impacted hemodynamics similarly in HTN compared to no-HTN. Carotid-femoral pulse wave velocity, MCA pulsatility index, carotid pulsatility index, and W1 increased similarly after exercise in both groups (P < 0.05). Carotid pulse pressure and ß-stiffness were unaltered after exercise. Postexercise changes in W1 were positively associated with carotid pulsatility index, which was further associated with MCA pulsatility index. CONCLUSIONS: These data suggest adults with treated HTN experience similar increases in aortic stiffness and cerebrovascular hemodynamic pulsatility during early recovery from acute aerobic exercise as their counterparts without HTN.


Asunto(s)
Circulación Cerebrovascular/fisiología , Ejercicio Físico/fisiología , Hipertensión/fisiopatología , Rigidez Vascular , Aorta/fisiopatología , Presión Arterial , Arterias Carótidas/fisiopatología , Arteria Carótida Común , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Arteria Cerebral Media/fisiopatología , Consumo de Oxígeno , Análisis de la Onda del Pulso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA