Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Health Serv Res ; 24(1): 687, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816829

RESUMEN

INTRODUCTION: Rates of substance use are high among youth involved in the legal system (YILS); however, YILS are less likely to initiate and complete substance use treatment compared to their non legally-involved peers. There are multiple steps involved in connecting youth to needed services, from screening and referral within the juvenile legal system to treatment initiation and completion within the behavioral health system. Understanding potential gaps in the care continuum requires data and decision-making from these two systems. The current study reports on the development of data dashboards that integrate these systems' data to help guide decisions to improve substance use screening and treatment for YILS, focusing on end-user feedback regarding dashboard utility. METHODS: Three focus groups were conducted with n = 21 end-users from juvenile legal systems and community mental health centers in front-line positions and in decision-making roles across 8 counties to gather feedback on an early version of the data dashboards; dashboards were then modified based on feedback. RESULTS: Qualitative analysis revealed topics related to (1) important aesthetic features of the dashboard, (2) user features such as filtering options and benchmarking to compare local data with other counties, and (3) the centrality of consistent terminology for data dashboard elements. Results also revealed the use of dashboards to facilitate collaboration between legal and behavioral health systems. CONCLUSIONS: Feedback from end-users highlight important design elements and dashboard utility as well as the challenges of working with cross-system and cross-jurisdiction data.


Asunto(s)
Grupos Focales , Investigación Cualitativa , Trastornos Relacionados con Sustancias , Humanos , Adolescente , Trastornos Relacionados con Sustancias/terapia , Masculino , Femenino , Delincuencia Juvenil/legislación & jurisprudencia , Continuidad de la Atención al Paciente
2.
BMC Genomics ; 22(1): 513, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233619

RESUMEN

BACKGROUND: Direct-sequencing technologies, such as Oxford Nanopore's, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. RESULT: Here, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. CONCLUSIONS: Sequoia's interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available at https://github.com/dnonatar/Sequoia .


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Sequoia , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN , Programas Informáticos
3.
BMC Bioinformatics ; 16 Suppl 11: S6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26329021

RESUMEN

BACKGROUND: The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. RESULTS: In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE through a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. CONCLUSIONS: BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.


Asunto(s)
Biología Computacional/métodos , Gráficos por Computador , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano , Genómica/métodos , Programas Informáticos
4.
JMIR Hum Factors ; 11: e57239, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861717

RESUMEN

BACKGROUND: Overdose Fatality Review (OFR) is an important public health tool for shaping overdose prevention strategies in communities. However, OFR teams review only a few cases at a time, which typically represent a small fraction of the total fatalities in their jurisdiction. Such limited review could result in a partial understanding of local overdose patterns, leading to policy recommendations that do not fully address the broader community needs. OBJECTIVE: This study explored the potential to enhance conventional OFRs with a data dashboard, incorporating visualizations of touchpoints-events that precede overdoses-to highlight prevention opportunities. METHODS: We conducted 2 focus groups and a survey of OFR experts to characterize their information needs and design a real-time dashboard that tracks and measures decedents' past interactions with services in Indiana. Experts (N=27) were engaged, yielding insights on essential data features to incorporate and providing feedback to guide the development of visualizations. RESULTS: The findings highlighted the importance of showing decedents' interactions with health services (emergency medical services) and the justice system (incarcerations). Emphasis was also placed on maintaining decedent anonymity, particularly in small communities, and the need for training OFR members in data interpretation. The developed dashboard summarizes key touchpoint metrics, including prevalence, interaction frequency, and time intervals between touchpoints and overdoses, with data viewable at the county and state levels. In an initial evaluation, the dashboard was well received for its comprehensive data coverage and its potential for enhancing OFR recommendations and case selection. CONCLUSIONS: The Indiana touchpoints dashboard is the first to display real-time visualizations that link administrative and overdose mortality data across the state. This resource equips local health officials and OFRs with timely, quantitative, and spatiotemporal insights into overdose risk factors in their communities, facilitating data-driven interventions and policy changes. However, fully integrating the dashboard into OFR practices will likely require training teams in data interpretation and decision-making.


Asunto(s)
Sobredosis de Droga , Grupos Focales , Diseño Centrado en el Usuario , Humanos , Sobredosis de Droga/prevención & control , Sobredosis de Droga/epidemiología , Indiana/epidemiología , Encuestas y Cuestionarios
5.
Methods Mol Biol ; 2624: 127-138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36723813

RESUMEN

Oxford Nanopore-based long-read direct RNA sequencing protocols are being increasingly used to study the dynamics of RNA metabolic processes due to improvements in read lengths, increased throughput, decreasing cost, ease of library preparation, and convenience. Long-read sequencing enables single-molecule-based detection of posttranscriptional changes, promising novel insights into the functional roles of RNA. However, fulfilling this potential will necessitate the development of new tools for analyzing and exploring this type of data. Although there are tools that allow users to analyze signal information, such as comparing raw signal traces to a nucleotide sequence, they don't facilitate studying each individual signal instance in each read or perform analysis of signal clusters based on signal similarity. Therefore, we present Sequoia, a visual analytics application that allows users to interactively analyze signals originating from nanopore sequencers and can readily be extended to both RNA and DNA sequencing datasets. Sequoia combines a Python-based backend with a multi-view graphical interface that allows users to ingest raw nanopore sequencing data in Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to find attributes of interest. In this tutorial, we illustrate each individual step involved in running Sequoia and in the process dissect input data characteristics. We show how to generate Nanopore sequencing-based visualizations by leveraging dimensionality reduction and parameter tuning to separate modified RNA sequences from their unmodified counterparts. Sequoia's interactive features enhance nanopore-based computational methodologies. Sequoia enables users to construct rationales and hypotheses and develop insights about the dynamic nature of RNA from the visual analysis. Sequoia is available at https://github.com/dnonatar/Sequoia .


Asunto(s)
Nanoporos , Sequoia , ARN/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN , Programas Informáticos
6.
Artículo en Inglés | MEDLINE | ID: mdl-36240035

RESUMEN

Guidelines for color use in quantitative visualizations have strongly discouraged the use of rainbow colormaps, arguing instead for smooth designs that do not induce visual discontinuities or implicit color categories. However, the empirical evidence behind this argument has been mixed and, at times, even contradictory. In practice, rainbow colormaps are widely used, raising questions about the true utility or dangers of such designs. We study how color categorization impacts the interpretation of scalar fields. We first introduce an approach to detect latent categories in colormaps. We hypothesize that the appearance of color categories in scalar visualizations can be beneficial in that they enhance the perception of certain features, although at the cost of rendering other features less noticeable. In three crowdsourced experiments, we show that observers are more likely to discriminate global, distributional features when viewing colorful scales that induce categorization (e.g., rainbow or diverging schemes). Conversely, when seeing the same data through a less colorful representation, observers are more likely to report localized features defined by small variations in the data. Participants showed awareness of these different affordances, and exhibited bias for exploiting the more discriminating colormap, given a particular feature type. Our results demonstrate costs and benefits for rainbows (and similarly colorful schemes), suggesting that their complementary utility for analyzing scalar data should not be dismissed. In addition to explaining potentially valid uses of rainbow, our study provides actionable guidelines, including on when such designs can be more harmful than useful. Data and materials are available at https://osf.io/xjhtf.

7.
IEEE Trans Vis Comput Graph ; 27(2): 1032-1042, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33048735

RESUMEN

Color mapping is a foundational technique for visualizing scalar data. Prior literature offers guidelines for effective colormap design, such as emphasizing luminance variation while limiting changes in hue. However, empirical studies of color are largely focused on perceptual tasks. This narrow focus inhibits our understanding of how generalizable these guidelines are, particularly to tasks like visual inference that require synthesis and judgement across multiple percepts. Furthermore, the emphasis on traditional ramp designs (e.g., sequential or diverging) may sideline other key metrics or design strategies. We study how a cognitive metric-color name variation-impacts people's ability to make model-based judgments. In two graphical inference experiments, participants saw a series of color-coded scalar fields sampled from different models and assessed the relationships between these models. Contrary to conventional guidelines, participants were more accurate when viewing colormaps that cross a variety of uniquely nameable colors. We modeled participants' performance using this metric and found that it provides a better fit to the experimental data than do existing design principles. Our findings indicate cognitive advantages for colorful maps like rainbow, which exhibit high color categorization, despite their traditionally undesirable perceptual properties. We also found no evidence that color categorization would lead observers to infer false data features. Our results provide empirically grounded metrics for predicting a colormap's performance and suggest alternative guidelines for designing new quantitative colormaps to support inference. The data and materials for this paper are available at: https://osf.io/tck2r/.

8.
IEEE Comput Graph Appl ; 33(4): 38-48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24808058

RESUMEN

Constructing integrative visualizations that simultaneously cater to a variety of data types is challenging. Hybrid-reality environments blur the line between virtual environments and tiled display walls. They incorporate high-resolution, stereoscopic displays, which can be used to juxtapose large, heterogeneous datasets while providing a range of naturalistic interaction schemes. They thus empower designers to construct integrative visualizations that more effectively mash up 2D, 3D, temporal, and multivariate datasets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA