Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(1): e1009224, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33417599

RESUMEN

Discovering drugs that efficiently treat brain diseases has been challenging. Genetic variants that modulate the expression of potential drug targets can be utilized to assess the efficacy of therapeutic interventions. We therefore employed Mendelian Randomization (MR) on gene expression measured in brain tissue to identify drug targets involved in neurological and psychiatric diseases. We conducted a two-sample MR using cis-acting brain-derived expression quantitative trait loci (eQTLs) from the Accelerating Medicines Partnership for Alzheimer's Disease consortium (AMP-AD) and the CommonMind Consortium (CMC) meta-analysis study (n = 1,286) as genetic instruments to predict the effects of 7,137 genes on 12 neurological and psychiatric disorders. We conducted Bayesian colocalization analysis on the top MR findings (using P<6x10-7 as evidence threshold, Bonferroni-corrected for 80,557 MR tests) to confirm sharing of the same causal variants between gene expression and trait in each genomic region. We then intersected the colocalized genes with known monogenic disease genes recorded in Online Mendelian Inheritance in Man (OMIM) and with genes annotated as drug targets in the Open Targets platform to identify promising drug targets. 80 eQTLs showed MR evidence of a causal effect, from which we prioritised 47 genes based on colocalization with the trait. We causally linked the expression of 23 genes with schizophrenia and a single gene each with anorexia, bipolar disorder and major depressive disorder within the psychiatric diseases and 9 genes with Alzheimer's disease, 6 genes with Parkinson's disease, 4 genes with multiple sclerosis and two genes with amyotrophic lateral sclerosis within the neurological diseases we tested. From these we identified five genes (ACE, GPNMB, KCNQ5, RERE and SUOX) as attractive drug targets that may warrant follow-up in functional studies and clinical trials, demonstrating the value of this study design for discovering drug targets in neuropsychiatric diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Descubrimiento de Drogas , Predisposición Genética a la Enfermedad , Transcriptoma/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Encéfalo/metabolismo , Encéfalo/patología , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Terapia Molecular Dirigida , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Esquizofrenia/patología
2.
Alzheimers Dement ; 18(10): 1846-1867, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34918867

RESUMEN

INTRODUCTION: A few copy number variations (CNVs) have been reported for Alzheimer's disease (AD). However, there is a lack of a systematic investigation of CNVs in AD based on whole genome sequencing (WGS) data. METHODS: We used four methods to identify consensus CNVs from the WGS data of 1,411 individuals and further investigated their functional roles in AD using the matched transcriptomic and clinicopathological data. RESULTS: We identified 3,012 rare AD-specific CNVs whose residing genes are enriched for cellular glucuronidation and neuron projection pathways. Genes whose mRNA expressions are significantly correlated with common CNVs are involved in major histocompatibility complex class II receptor activity. Integration of CNVs, gene expression, and clinical and pathological traits further pinpoints a key CNV that potentially regulates immune response in AD. DISCUSSION: We identify CNVs as potential genetic regulators of immune response in AD. The identified CNVs and their downstream gene networks reveal novel pathways and targets for AD.


Asunto(s)
Enfermedad de Alzheimer , Variaciones en el Número de Copia de ADN , Humanos , Variaciones en el Número de Copia de ADN/genética , Enfermedad de Alzheimer/genética , Secuenciación Completa del Genoma , ARN Mensajero
3.
Acta Neuropathol ; 141(5): 667-680, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33635380

RESUMEN

Progressive supranuclear palsy (PSP) is the second most common neurodegenerative Parkinsonian disorder after Parkinson's disease, and is characterized as a primary tauopathy. Leveraging the considerable clinical and neuropathologic heterogeneity associated with PSP, we measured tau neuropathology as quantitative traits to perform a genome-wide association study (GWAS) within PSP to identify genes and biological pathways that underlie the PSP disease process. In 882 PSP cases, semi-quantitative scores for phosphorylated tau-immunoreactive coiled bodies (CBs), neurofibrillary tangles (NFTs), tufted astrocytes (TAs), and tau threads were documented from 18 brain regions, and converted to latent trait (LT) variables using the R ltm package. LT analysis utilizes a multivariate regression model that links categorical responses to unobserved covariates allowing for a reduction of dimensionality, generating a single, continuous variable to account for the multiple lesions and brain regions assessed. We first tested for association with PSP LTs and the top PSP GWAS susceptibility loci. Significant SNP/LT associations were identified at rs242557 (MAPT H1c sub-haplotype) with hindbrain CBs and rs1768208 (MOBP) with forebrain tau threads. Digital microscopy was employed to quantify phosphorylated tau burden in midbrain tectum and red nucleus in 795 PSP cases and tau burdens were used as quantitative phenotypes in GWAS. Top associations were identified at rs1768208 with midbrain tectum and red nucleus tau burden. Additionally, we performed a PSP LT GWAS on an initial cohort, a follow-up SNP panel (37 SNPs, P < 10-5) in an extended cohort, and a combined analysis. Top SNP/LT associations were identified at SNPs in or near SPTBN5/EHD4, SEC13/ATP2B2, EPHB1/PPP2R3A, TBC1D8, IFNGR1/OLIG3, ST6GAL1, HK1, CALB1, and SGCZ. Finally, testing for SNP/transcript associations using whole transcriptome and whole genome data identified significant expression quantitative trait loci at rs3088159/SPTBN5/EHD4 and rs154239/GHRL. Modeling tau neuropathology heterogeneity using LTs as quantitative phenotypes in a GWAS may provide substantial insight into biological pathways involved in PSP by affecting regional tau burden.


Asunto(s)
Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Proteínas tau/genética , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad
4.
Alzheimers Dement ; 16(7): 983-1002, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32400971

RESUMEN

INTRODUCTION: MAPT H1 haplotype is implicated as a risk factor for neurodegenerative diseases including Alzheimer's disease (AD). METHODS: Using Alzheimer's Disease Genetics Consortium (ADGC) genome-wide association study (GWAS) data (n = 18,841), we conducted a MAPT H1/H2 haplotype-stratified association to discover MAPT haplotype-specific AD risk loci. RESULTS: We identified 11 loci-5 in H2-non-carriers and 6 in H2-carriers-although none of the MAPT haplotype-specific associations achieved genome-wide significance. The most significant H2 non-carrier-specific association was with a NECTIN2 intronic (P = 1.33E-07) variant, and that for H2 carriers was near NKX6-1 (P = 1.99E-06). The GABRG2 locus had the strongest epistasis with MAPT H1/H2 variant rs8070723 (P = 3.91E-06). Eight of the 12 genes at these loci had transcriptome-wide significant differential expression in AD versus control temporal cortex (q < 0.05). Six genes were members of the brain transcriptional co-expression network implicated in "synaptic transmission" (P = 9.85E-59), which is also enriched for neuronal genes (P = 1.0E-164), including MAPT. DISCUSSION: This stratified GWAS identified loci that may confer AD risk in a MAPT haplotype-specific manner. This approach may preferentially enrich for neuronal genes implicated in synaptic transmission.


Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad , Haplotipos , Polimorfismo de Nucleótido Simple , Proteínas tau/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos
5.
BMC Bioinformatics ; 19(1): 139, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661148

RESUMEN

BACKGROUND: After decades of identifying risk factors using array-based genome-wide association studies (GWAS), genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large sample sizes for statistical power and has brought up questions about whether the current variant calling practices are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines. Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume that false negative calls are a small percent of total. RESULTS: We analyzed 10,000 exomes from the Alzheimer's Disease Sequencing Project (ADSP) using multiple analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000 samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low frequency (minor allele frequency [MAF] 1-5%) and rare (MAF < 1%) variants, which are the very type of variants of interest. In 660 Alzheimer's disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline approach but recovered by the multi-pipeline approach. CONCLUSIONS: Identification of the complete variant set from sequencing data is the prerequisite of genetic association analyses. The current analytic practice of calling genetic variants from sequencing data using a single bioinformatics pipeline is no longer adequate with the increasingly large projects. The number and percentage of quality variants that passed quality filters but are missed by the one-pipeline approach rapidly increased with sample size.


Asunto(s)
Biología Computacional/métodos , Variación Genética , Enfermedad de Alzheimer/genética , Composición de Base/genética , Descubrimiento de Drogas , Genoma , Genotipo , Técnicas de Genotipaje , Humanos , Tamaño de la Muestra , Alineación de Secuencia
6.
Acta Neuropathol ; 136(5): 709-727, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30136084

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by tau pathology in neurons and glial cells. Transcriptional regulation has been implicated as a potential mechanism in conferring disease risk and neuropathology for some PSP genetic risk variants. However, the role of transcriptional changes as potential drivers of distinct cell-specific tau lesions has not been explored. In this study, we integrated brain gene expression measurements, quantitative neuropathology traits and genome-wide genotypes from 268 autopsy-confirmed PSP patients to identify transcriptional associations with unique cell-specific tau pathologies. We provide individual transcript and transcriptional network associations for quantitative oligodendroglial (coiled bodies = CB), neuronal (neurofibrillary tangles = NFT), astrocytic (tufted astrocytes = TA) tau pathology, and tau threads and genomic annotations of these findings. We identified divergent patterns of transcriptional associations for the distinct tau lesions, with the neuronal and astrocytic neuropathologies being the most different. We determined that NFT are positively associated with a brain co-expression network enriched for synaptic and PSP candidate risk genes, whereas TA are positively associated with a microglial gene-enriched immune network. In contrast, TA is negatively associated with synaptic and NFT with immune system transcripts. Our findings have implications for the diverse molecular mechanisms that underlie cell-specific vulnerability and disease risk in PSP.


Asunto(s)
Química Encefálica/genética , Expresión Génica/genética , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Tauopatías/genética , Tauopatías/patología , Anciano , Astrocitos/patología , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Sistema Inmunológico/patología , Inmunohistoquímica , Masculino , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Neuronas/patología , Proteoma , ARN/biosíntesis , ARN/genética , Sinapsis/patología
7.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38260408

RESUMEN

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

8.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902234

RESUMEN

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Barrera Hematoencefálica , Pericitos , Proteína smad3 , Factor A de Crecimiento Endotelial Vascular , Pez Cebra , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Proteína smad3/metabolismo , Proteína smad3/genética , Astrocitos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Pericitos/metabolismo , Pericitos/patología , Masculino , Células Madre Pluripotentes Inducidas/metabolismo , Femenino , Anciano , Transcriptoma , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/irrigación sanguínea , Anciano de 80 o más Años , Modelos Animales de Enfermedad
9.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712030

RESUMEN

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

10.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659743

RESUMEN

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

11.
Neurol Genet ; 9(5): e200086, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37476022

RESUMEN

Background and Objectives: Variants in the CWH43 gene have been associated with normal pressure hydrocephalus (NPH). We aimed to replicate these findings, identify additional CWH43 variants, and further define the clinical phenotype associated with CWH43 variants. Methods: We determined the prevalence of CWH43 variants by whole-genome sequencing (WGS) in 94 patients with NPH. The odds of having CWH43 variant carriers develop NPH were determined through comparison with 532 Mayo Clinic Biobank volunteers without a history of NPH. For patients with NPH, we documented the head circumference, prevalence of disproportionate enlargement of subarachnoid hydrocephalus (DESH), microvascular changes on MRI quantified by the Fazekas scale, and ambulatory response to ventriculoperitoneal shunting. Results: We identified rare (MAF <0.05) coding CWH43 variants in 15 patients with NPH. Ten patients (Leu533Terfs, n = 8; Lys696Asnfs, n = 2) harbored previously reported predicted loss-of-function variants, and combined burden analysis confirmed risk association with NPH (OR 2.60, 95% CI 1.12-6.03, p = 0.027). Additional missense variations observed included Ile292Thr (n = 2), Ala469Ser (n = 2), and Ala626Val (n = 1). Though not quite statistically significant, in single variable analysis, the odds of having a head circumference above the 75th percentile of normal controls was more than 5 times higher for CWH43 variant carriers compared with that for noncarriers (unadjusted OR 5.67, 95% CI 0.96-108.55, p = 0.057), and this was consistent after adjusting for sex and height (OR 5.42, 95% CI 0.87-106.37, p = 0.073). DESH was present in 56.7% of noncarriers and only 21.4% of carriers (p = 0.016), while sulcal trapping was also more prevalent among noncarriers (67.2% vs 35.7%, p = 0.030). All 8 of the 15 variant carriers who underwent ventriculoperitoneal shunting at our institution experienced ambulatory improvements. Discussion: CWH43 variants are frequent in patients with NPH. Predicted loss-of-function mutations were the most common; we identified missense mutations that require further study. Our findings suggest that congenital factors, rather than malabsorption or vascular dysfunction, are primary contributors to the CWH43-related NPH clinical syndrome.

12.
Mol Neurodegener ; 18(1): 2, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609403

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aß) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aß40, Aß42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS: Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS: We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS: Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Estudio de Asociación del Genoma Completo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/patología , Fenotipo , Apolipoproteínas E/metabolismo , Proteínas tau/metabolismo
13.
Nat Commun ; 14(1): 6801, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919278

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by cell-type-specific tau lesions in neurons and glia. Prior work uncovered transcriptome changes in human PSP brains, although their cell-specificity is unknown. Further, systematic data integration and experimental validation platforms to prioritize brain transcriptional perturbations as therapeutic targets in PSP are currently lacking. In this study, we combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from PSP and control brains with transcriptome data from a mouse tauopathy and experimental validations in Drosophila tau models for systematic discovery of high-confidence expression changes in PSP with therapeutic potential. We discover, replicate, and annotate thousands of differentially expressed genes in PSP, many of which reside in glia-enriched co-expression modules and cells. We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP with striking cross-species validations. We share our findings and data via our interactive application tool PSP RNAseq Atlas ( https://rtools.mayo.edu/PSP_RNAseq_Atlas/ ). Our findings reveal robust glial transcriptome changes in PSP, provide a cross-species systems biology approach, and a tool for therapeutic target discoveries in PSP with potential application in other neurodegenerative diseases.


Asunto(s)
Receptor con Dominio Discoidina 2 , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Animales , Ratones , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo , Biología de Sistemas , Tauopatías/patología , Neuroglía/metabolismo
14.
medRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905059

RESUMEN

The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; ß : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; ß : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.

15.
Medicine (Baltimore) ; 102(24): e34017, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327267

RESUMEN

We previously demonstrated that increased expression of the SERPINA5 gene is associated with hippocampal vulnerability in Alzheimer's disease (AD) brains. SERPINA5 was further demonstrated to be a novel tau-binding partner that colocalizes within neurofibrillary tangles. Our goal was to determine whether genetic variants in the SERPINA5 gene contributed to clinicopathologic phenotypes in AD. To screen for SERPINA5 variants, we sequenced 103 autopsy-confirmed young-onset AD cases with a positive family history of cognitive decline. To further assess the frequency of a rare missense variant, SERPINA5 p.E228Q, we screened an additional 1114 neuropathologically diagnosed AD cases. To provide neuropathologic context in AD, we immunohistochemically evaluated SERPINA5 and tau in a SERPINA5 p.E228Q variant carrier and a matched noncarrier. In the initial SERPINA5 screen, we observed 1 individual with a rare missense variant (rs140138746) that resulted in an amino acid change (p.E228Q). In our AD validation cohort, we identified an additional 5 carriers of this variant, resulting in an allelic frequency of 0.0021. There was no significant difference between SERPINA5 p.E228Q carriers and noncarriers in terms of demographic or clinicopathologic characteristics. Although not significant, on average SERPINA5 p.E228Q carriers were 5 years younger at age of disease onset than noncarriers (median: 66 [60-73] vs 71 [63-77] years, P = .351). In addition, SERPINA5 p.E228Q carriers exhibited a longer disease duration than noncarriers that approached significance (median: 12 [10-15]) vs 9 [6-12] years, P = .079). More severe neuronal loss was observed in the locus coeruleus, hippocampus, and amygdala of the SERPINA5 p.E228Q carrier compared to noncarrier, although no significant difference in SERPINA5-immunopositive lesions was observed. Throughout the AD brain in either carrier or noncarrier, areas with early pretangle pathology or burnt-out ghost tangle accumulation did not reveal SERPINA5-immunopositive neurons. Mature tangles and newly formed ghost tangles appeared to correspond well with SERPINA5-immunopositive tangle-bearing neurons. SERPINA5 gene expression was previously associated with disease phenotype; however, our findings suggest that SERPINA5 genetic variants may not be a contributing factor to clinicopathologic differences in AD. SERPINA5-immunopositive neurons appear to undergo a pathologic process that corresponded with specific levels of tangle maturity.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Estudios Transversales , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Encéfalo/patología , Hipocampo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Inhibidor de Proteína C/metabolismo
16.
BMC Bioinformatics ; 13 Suppl 15: S4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23046475

RESUMEN

BACKGROUND: Computational methods for structural gene annotation have propelled gene discovery but face certain drawbacks with regards to prokaryotic genome annotation. Identification of transcriptional start sites, demarcating overlapping gene boundaries, and identifying regulatory elements such as small RNA are not accurate using these approaches. In this study, we re-visit the structural annotation of Mannheimia haemolytica PHL213, a bovine respiratory disease pathogen. M. haemolytica is one of the causative agents of bovine respiratory disease that results in about $3 billion annual losses to the cattle industry. We used RNA-Seq and analyzed the data using freely-available computational methods and resources. The aim was to identify previously unannotated regions of the genome using RNA-Seq based expression profile to complement the existing annotation of this pathogen. RESULTS: Using the Illumina Genome Analyzer, we generated 9,055,826 reads (average length ~76 bp) and aligned them to the reference genome using Bowtie. The transcribed regions were analyzed using SAMTOOLS and custom Perl scripts in conjunction with BLAST searches and available gene annotation information. The single nucleotide resolution map enabled the identification of 14 novel protein coding regions as well as 44 potential novel sRNA. The basal transcription profile revealed that 2,506 of the 2,837 annotated regions were expressed in vitro, at 95.25% coverage, representing all broad functional gene categories in the genome. The expression profile also helped identify 518 potential operon structures involving 1,086 co-expressed pairs. We also identified 11 proteins with mutated/alternate start codons. CONCLUSIONS: The application of RNA-Seq based transcriptome profiling to structural gene annotation helped correct existing annotation errors and identify potential novel protein coding regions and sRNA. We used computational tools to predict regulatory elements such as promoters and terminators associated with the novel expressed regions for further characterization of these novel functional elements. Our study complements the existing structural annotation of Mannheimia haemolytica PHL213 based on experimental evidence. Given the role of sRNA in virulence gene regulation and stress response, potential novel sRNA described in this study can form the framework for future studies to determine the role of sRNA, if any, in M. haemolytica pathogenesis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Mannheimia haemolytica/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Biología Computacional/métodos , Genoma Bacteriano , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Operón , ARN Bacteriano/genética , Enfermedades Respiratorias/microbiología , Enfermedades Respiratorias/veterinaria , Alineación de Secuencia
17.
Heliyon ; 8(12): e11769, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36466572

RESUMEN

Listeria monocytogenes is a foodborne pathogen that can cause a potentially life-threatening infection, and almost all cases of human listeriosis are caused by L. monocytogenes isolates in serotypes 1/2a, 1/2b, 1/2c, and 4b. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research. In the current study, we examined the potential of MALDI-TOF MS for rapid identification of the foodborne pathogen L. monocytogenes and to identify high-risk serotypes. To achieve this, MALDI-TOF MS was applied to 50 L monocytogenes strains. All strains were identified as L. monocytogenes species based on pattern matching against reference spectra for the species. Importantly, 83 specific mass ions were consistently and uniquely found in high-risk L. monocytogenes serotypes 1/2a, 1/2b, 1/2c, and 4b. These 83 mass ions were also unique to specific combinations of these serotypes, which enabled specific identification of these four serotypes using MALDI Biotyper analysis. Hence, this method shows potential for using MALDI-TOF MS for the rapid identification of L. monocytogenes species and to discriminate high-risk L. monocytogenes serotypes through specific serotype-specific biomarker ions.

18.
EBioMedicine ; 78: 103929, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35307406

RESUMEN

BACKGROUND: African Americans (AA) remain underrepresented in Alzheimer's disease (AD) research, despite the prevalence of AD being double in AA compared to non-Hispanic whites. To address this disparity, our group has established the Florida Consortium for African American Alzheimer's Disease Studies (FCA3DS), focusing on the identification of genetic risk factors and novel plasma biomarkers. METHOD: Utilizing FCA3DS whole exome sequence (WES) and plasma RNA samples from AD cases (n=151) and cognitively unimpaired (CU) elderly controls (n=269), we have performed differential gene expression (DGE) and expression quantitative trait locus (eQTL) analyses on 50 transcripts measured with a custom nanoString® panel. We designed this panel to measure, in plasma, cell-free mRNA (cf-mRNA) levels of AD-relevant genes. FINDINGS: Association with higher plasma CLU in CU vs. AD remained significant after Bonferroni correction. Study-wide significant eQTL associations were observed with 105 WES variants in cis with 22 genes, including variants in genes previously associated with AD risk in AA such as ABCA7 and AKAP9. Results from this plasma eQTL analysis identified AD-risk variants in ABCA7 and AKAP9 that are significantly associated with lower and higher plasma mRNA levels of these genes, respectively. Receiver operating characteristic analysis of age, sex APOE-ε4 dosage, CLU, APP, CD14, ABCA7, AKAP9 and APOE mRNA levels, and ABCA7 and AKAP9 eQTLs, achieved 77% area under the curve to discriminate AD vs. CU, an 8% improvement over a model that only included age, sex and APOE-ε4 dosage. INTERPRETATION: Incorporating plasma mRNA levels could contribute to improved predictive value of AD biomarker panels. FUNDING: This work was supported by the National Institute on Aging [RF AG051504, U01 AG046139, R01 AG061796 to NET; P30 AG062677 to JAL and NGR]; Florida Health Ed and Ethel Moore Alzheimer's Disease grants [5AZ03 and 7AZ17 to NET; 7AZ07 to MMC; 8AZ08 to JAL].


Asunto(s)
Enfermedad de Alzheimer , Negro o Afroamericano , Transportadoras de Casetes de Unión a ATP/genética , Negro o Afroamericano/genética , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Biomarcadores/sangre , Humanos , ARN Mensajero/genética
19.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34813500

RESUMEN

Vast numbers of differentially expressed genes and perturbed networks have been identified in Alzheimer's disease (AD), however, neither disease nor brain region specificity of these transcriptome alterations has been explored. Using RNA-Seq data from 231 temporal cortex and 224 cerebellum samples from patients with AD and progressive supranuclear palsy (PSP), a tauopathy, we identified a striking correlation in the directionality and magnitude of gene expression changes between these 2 neurodegenerative proteinopathies. Further, the transcriptomic changes in AD and PSP brains ware highly conserved between the temporal and cerebellar cortices, indicating that highly similar transcriptional changes occur in pathologically affected and grossly less affected, albeit functionally connected, areas of the brain. Shared up- or downregulated genes in AD and PSP are enriched in biological pathways. Many of these genes also have concordant protein changes and evidence of epigenetic control. These conserved transcriptomic alterations of 2 distinct proteinopathies in brain regions with and without significant gross neuropathology have broad implications. AD and other neurodegenerative diseases are likely characterized by common disease or compensatory pathways with widespread perturbations in the whole brain. These findings can be leveraged to develop multifaceted therapies and biomarkers that address these common, complex, and ubiquitous molecular alterations in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Transcriptoma , Anciano , Femenino , Humanos , Masculino
20.
J Alzheimers Dis ; 79(1): 323-334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252078

RESUMEN

BACKGROUND/OBJECTIVE: The aim of this study was to determine if plasma concentrations of 5 surrogate markers of Alzheimer's disease (AD) pathology and neuroinflammation are associated with disease status in African Americans. METHODS: We evaluated 321 African Americans (159 AD, 162 controls) from the Florida Consortium for African-American Alzheimer's Disease Studies (FCA3DS). Five plasma proteins reflecting AD neuropathology or inflammation (Aß42, tau, IL6, IL10, TNFα) were tested for associations with AD, age, sex, APOE and MAPT genotypes, and for pairwise correlations. RESULTS: Plasma tau levels were higher in AD when adjusted for biological and technical covariates. APOEɛ4 was associated with lower plasma Aß42 and tau levels. Older age was associated with higher plasma Aß42, tau, and TNFα. Females had lower IL10 levels. Inflammatory proteins had strong pairwise correlations amongst themselves and with Aß42. CONCLUSION: We identified effects of demographic and genetic variants on five potential plasma biomarkers in African Americans. Plasma inflammatory biomarkers and Aß42 may reflect correlated pathologies and elevated plasma tau may be a biomarker of AD in this population.


Asunto(s)
Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides/sangre , Negro o Afroamericano , Interleucina-10/sangre , Interleucina-6/sangre , Fragmentos de Péptidos/sangre , Factor de Necrosis Tumoral alfa/sangre , Proteínas tau/sangre , Anciano , Anciano de 80 o más Años , Apolipoproteínas E/genética , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA