Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 166(2): 596-611, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30175846

RESUMEN

Understanding the molecular and physiological mechanisms of trait diversity is crucial for crop improvement to achieve drought adaptation. Root traits such as high biomass and/or deep rootedness are undoubtedly important drought adaptive traits. The major aim of this investigation was to functionally characterize a set of ethyl methane sulfonate-induced rice mutants for root traits. We report the identification of a high-root biomass mutant through a novel screening strategy for yield and Δ13 C measurements. The high-root mutant (392-9-1) thus identified, had a 66% higher root biomass compared to wild-type (Nagina-22). Better maintenance of leaf turgor and carbon assimilation rates resulted in lower drought susceptibility index in 392-9-1. Targeted resequencing revealed three non-synonymous single nucleotide variations in 392-9-1 for the genes HOX10, CITRATE SYNTHASE and ZEAXANTHIN EPOXIDASE. Segregation pattern of phenotype and mutant alleles in a single parent backcross F2 population revealed a typical 3:1 segregation for each of the mutant alleles. The number of F2 progeny with root biomass equal to or greater than that of 392-9-1 represented approximately one-third of the population indicating a major role played by HOX10 gene in regulating root growth in rice. Allele-specific Sanger sequencing in contrasting F2 progenies confirmed the co-segregation of HOX10 allele with the root biomass. The non-synonymous mutations in the other two genes did not reveal any specific pattern of co-segregation with root phenotype, indicating a strong role of HOX10, an upstream transcription factor, in regulating root biomass in rice.


Asunto(s)
Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Alelos , Biomasa , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Factores de Transcripción/genética
2.
BMC Plant Biol ; 13: 194, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24289047

RESUMEN

BACKGROUND: Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. RESULT: We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species into distinct clusters. CONCLUSION: We report a total of 188 genomic and genic SSR markers in Morus alba L. A large proportion of these markers (164) were polymorphic both among mulberry species and genotypes. A substantial number of these markers (149) were also transferable to other related species like Ficus, Fig and Jackfruit. The extent of polymorphism revealed and the ability to detect heterozygosity among the cross pollinated mulberry species and genotypes render these markers an invaluable genomic resource that can be utilized in assessing molecular diversity as well as in QTL mapping and subsequently mulberry crop improvement through MAS.


Asunto(s)
Repeticiones de Microsatélite/genética , Morus/genética , Etiquetas de Secuencia Expresada , Genotipo , Morus/clasificación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA