Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299813

RESUMEN

Millions of commuters face congestion as a part of their daily routines. Mitigating traffic congestion requires effective transportation planning, design, and management. Accurate traffic data are needed for informed decision making. As such, operating agencies deploy fixed-location and often temporary detectors on public roads to count passing vehicles. This traffic flow measurement is key to estimating demand throughout the network. However, fixed-location detectors are spatially sparse and do not cover the entirety of the road network, and temporary detectors are temporally sparse, providing often only a few days of measurements every few years. Against this backdrop, previous studies proposed that public transit bus fleets could be used as surveillance agents if additional sensors were installed, and the viability and accuracy of this methodology was established by manually processing video imagery recorded by cameras mounted on transit buses. In this paper, we propose to operationalize this traffic surveillance methodology for practical applications, leveraging the perception and localization sensors already deployed on these vehicles. We present an automatic, vision-based vehicle counting method applied to the video imagery recorded by cameras mounted on transit buses. First, a state-of-the-art 2D deep learning model detects objects frame by frame. Then, detected objects are tracked with the commonly used SORT method. The proposed counting logic converts tracking results to vehicle counts and real-world bird's-eye-view trajectories. Using multiple hours of real-world video imagery obtained from in-service transit buses, we demonstrate that the proposed system can detect and track vehicles, distinguish parked vehicles from traffic participants, and count vehicles bidirectionally. Through an exhaustive ablation study and analysis under various weather conditions, it is shown that the proposed method can achieve high-accuracy vehicle counts.


Asunto(s)
Vehículos a Motor , Transportes , Humanos , Proyectos de Investigación , Tiempo (Meteorología)
2.
Sensors (Basel) ; 21(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34283141

RESUMEN

Social distancing (SD) is an effective measure to prevent the spread of the infectious Coronavirus Disease 2019 (COVID-19). However, a lack of spatial awareness may cause unintentional violations of this new measure. Against this backdrop, we propose an active surveillance system to slow the spread of COVID-19 by warning individuals in a region-of-interest. Our contribution is twofold. First, we introduce a vision-based real-time system that can detect SD violations and send non-intrusive audio-visual cues using state-of-the-art deep-learning models. Second, we define a novel critical social density value and show that the chance of SD violation occurrence can be held near zero if the pedestrian density is kept under this value. The proposed system is also ethically fair: it does not record data nor target individuals, and no human supervisor is present during the operation. The proposed system was evaluated across real-world datasets.


Asunto(s)
COVID-19 , Distanciamiento Físico , Atención a la Salud , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA