Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 587(7834): 460-465, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33149301

RESUMEN

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcitonina/metabolismo , Fibrinógeno/biosíntesis , Atrios Cardíacos/metabolismo , Miocardio/metabolismo , Comunicación Paracrina , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial , Colágeno Tipo I/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Atrios Cardíacos/citología , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Ratones , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Receptores de Calcitonina/metabolismo
2.
J Mol Cell Cardiol ; 180: 44-57, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37127261

RESUMEN

We compared commonly used BAPTA-derived chemical Ca2+ dyes (fura2, Fluo-4, and Rhod-2) with a newer genetically encoded indicator (R-GECO) in single cell models of the heart. We assessed their performance and effects on cardiomyocyte contractility, determining fluorescent signal-to-noise ratios and sarcomere shortening in primary ventricular myocytes from adult mouse and guinea pig, and in human iPSC-derived cardiomyocytes. Chemical Ca2+ dyes displayed dose-dependent contractile impairment in all cell types, and we observed a negative correlation between contraction and fluorescence signal-to-noise ratio, particularly for fura2 and Fluo-4. R-GECO had no effect on sarcomere shortening. BAPTA-based dyes, but not R-GECO, inhibited in vitro acto-myosin ATPase activity. The presence of fura2 accentuated or diminished changes in contractility and Ca2+ handling caused by small molecule modulators of contractility and intracellular ionic homeostasis (mavacamten, levosimendan, and flecainide), but this was not observed when using R-GECO in adult guinea pig left ventricular cardiomyocytes. Ca2+ handling studies are necessary for cardiotoxicity assessments of small molecules intended for clinical use. Caution should be exercised when interpreting small molecule studies assessing contractile effects and Ca2+ transients derived from BAPTA-like chemical Ca2+ dyes in cellular assays, a common platform for cardiac toxicology testing and mechanistic investigation of cardiac disease physiology and treatment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Cobayas , Humanos , Ratones , Calcio/metabolismo , Colorantes/metabolismo , Colorantes/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Porcinos
4.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36982903

RESUMEN

The substitution for Arg168His (R168H) in γ-tropomyosin (TPM3 gene, Tpm3.12 isoform) is associated with congenital muscle fiber type disproportion (CFTD) and muscle weakness. It is still unclear what molecular mechanisms underlie the muscle dysfunction seen in CFTD. The aim of this work was to study the effect of the R168H mutation in Tpm3.12 on the critical conformational changes that myosin, actin, troponin, and tropomyosin undergo during the ATPase cycle. We used polarized fluorescence microscopy and ghost muscle fibers containing regulated thin filaments and myosin heads (myosin subfragment-1) modified with the 1,5-IAEDANS fluorescent probe. Analysis of the data obtained revealed that a sequential interdependent conformational-functional rearrangement of tropomyosin, actin and myosin heads takes place when modeling the ATPase cycle in the presence of wild-type tropomyosin. A multistep shift of the tropomyosin strands from the outer to the inner domain of actin occurs during the transition from weak to strong binding of myosin to actin. Each tropomyosin position determines the corresponding balance between switched-on and switched-off actin monomers and between the strongly and weakly bound myosin heads. At low Ca2+, the R168H mutation was shown to switch some extra actin monomers on and increase the persistence length of tropomyosin, demonstrating the freezing of the R168HTpm strands close to the open position and disruption of the regulatory function of troponin. Instead of reducing the formation of strong bonds between myosin heads and F-actin, troponin activated it. However, at high Ca2+, troponin decreased the amount of strongly bound myosin heads instead of promoting their formation. Abnormally high sensitivity of thin filaments to Ca2+, inhibition of muscle fiber relaxation due to the appearance of the myosin heads strongly associated with F-actin, and distinct activation of the contractile system at submaximal concentrations of Ca2+ can lead to muscle inefficiency and weakness. Modulators of troponin (tirasemtiv and epigallocatechin-3-gallate) and myosin (omecamtiv mecarbil and 2,3-butanedione monoxime) have been shown to more or less attenuate the negative effects of the tropomyosin R168H mutant. Tirasemtiv and epigallocatechin-3-gallate may be used to prevent muscle dysfunction.


Asunto(s)
Actinas , Miopatías Estructurales Congénitas , Humanos , Actinas/metabolismo , Tropomiosina/metabolismo , Miosinas/metabolismo , Mutación , Adenosina Trifosfatasas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miopatías Estructurales Congénitas/metabolismo , Troponina/genética , Troponina/metabolismo , Calcio/metabolismo
5.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35409335

RESUMEN

The understanding of how genetic information may be inherited through generations was established by Gregor Mendel in the 1860s when he developed the fundamental principles of inheritance. The science of genetics, however, began to flourish only during the mid-1940s when DNA was identified as the carrier of genetic information. The world has since then witnessed rapid development of genetic technologies, with the latest being genome-editing tools, which have revolutionized fields from medicine to agriculture. This review walks through the historical timeline of genetics research and deliberates how this discipline might furnish a sustainable future for humanity.


Asunto(s)
Herencia , Bases de Datos Genéticas , Patrón de Herencia
6.
Circulation ; 141(10): 828-842, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31983222

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. METHODS: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. RESULTS: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. CONCLUSIONS: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/metabolismo , Mutación Missense/genética , Miocitos Cardíacos/fisiología , Cadenas Pesadas de Miosina/genética , Sarcómeros/metabolismo , Adenosina Trifosfatasas , Animales , Cardiomiopatía Hipertrófica/genética , Células Cultivadas , Metabolismo Energético , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Simulación de Dinámica Molecular , Relajación Muscular , Contracción Miocárdica , Miocitos Cardíacos/citología , Conformación Proteica , Sarcómeros/genética
7.
Circ Res ; 124(8): 1228-1239, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30732532

RESUMEN

RATIONALE: Subcellular Ca2+ indicators have yet to be developed for the myofilament where disease mutation or small molecules may alter contractility through myofilament Ca2+ sensitivity. Here, we develop and characterize genetically encoded Ca2+ indicators restricted to the myofilament to directly visualize Ca2+ changes in the sarcomere. OBJECTIVE: To produce and validate myofilament-restricted Ca2+ imaging probes in an adenoviral transduction adult cardiomyocyte model using drugs that alter myofilament function (MYK-461, omecamtiv mecarbil, and levosimendan) or following cotransduction of 2 established hypertrophic cardiomyopathy disease-causing mutants (cTnT [Troponin T] R92Q and cTnI [Troponin I] R145G) that alter myofilament Ca2+ handling. METHODS AND RESULTS: When expressed in adult ventricular cardiomyocytes RGECO-TnT (Troponin T)/TnI (Troponin I) sensors localize correctly to the sarcomere without contractile impairment. Both sensors report cyclical changes in fluorescence in paced cardiomyocytes with reduced Ca2+ on and increased Ca2+ off rates compared with unconjugated RGECO. RGECO-TnT/TnI revealed changes to localized Ca2+ handling conferred by MYK-461 and levosimendan, including an increase in Ca2+ binding rates with both levosimendan and MYK-461 not detected by an unrestricted protein sensor. Coadenoviral transduction of RGECO-TnT/TnI with hypertrophic cardiomyopathy causing thin filament mutants showed that the mutations increase myofilament [Ca2+] in systole, lengthen time to peak systolic [Ca2+], and delay [Ca2+] release. This contrasts with the effect of the same mutations on cytoplasmic Ca2+, when measured using unrestricted RGECO where changes to peak systolic Ca2+ are inconsistent between the 2 mutations. These data contrast with previous findings using chemical dyes that show no alteration of [Ca2+] transient amplitude or time to peak Ca2+. CONCLUSIONS: RGECO-TnT/TnI are functionally equivalent. They visualize Ca2+ within the myofilament and reveal unrecognized aspects of small molecule and disease-associated mutations in living cells.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Hipertrófica/genética , Mutación , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Sarcómeros/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adenoviridae , Animales , Bencilaminas/farmacología , Cardiomiopatía Hipertrófica/metabolismo , Cobayas , Técnicas In Vitro , Masculino , Miofibrillas/efectos de los fármacos , Miosinas/efectos de los fármacos , Miosinas/metabolismo , Simendán/farmacología , Transducción Genética/métodos , Troponina I/genética , Troponina I/metabolismo , Troponina T/genética , Troponina T/metabolismo , Uracilo/análogos & derivados , Uracilo/farmacología , Urea/análogos & derivados , Urea/farmacología
8.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204776

RESUMEN

Point mutations in the genes encoding the skeletal muscle isoforms of tropomyosin can cause a range of muscle diseases. The amino acid substitution of Arg for Pro residue in the 90th position (R90P) in γ-tropomyosin (Tpm3.12) is associated with congenital fiber type disproportion and muscle weakness. The molecular mechanisms underlying muscle dysfunction in this disease remain unclear. Here, we observed that this mutation causes an abnormally high Ca2+-sensitivity of myofilaments in vitro and in muscle fibers. To determine the critical conformational changes that myosin, actin, and tropomyosin undergo during the ATPase cycle and the alterations in these changes caused by R90P replacement in Tpm3.12, we used polarized fluorimetry. It was shown that the R90P mutation inhibits the ability of tropomyosin to shift towards the outer domains of actin, which is accompanied by the almost complete depression of troponin's ability to switch actin monomers off and to reduce the amount of the myosin heads weakly bound to F-actin at a low Ca2+. These changes in the behavior of tropomyosin and the troponin-tropomyosin complex, as well as in the balance of strongly and weakly bound myosin heads in the ATPase cycle may underlie the occurrence of both abnormally high Ca2+-sensitivity and muscle weakness. BDM, an inhibitor of myosin ATPase activity, and W7, a troponin C antagonist, restore the ability of tropomyosin for Ca2+-dependent movement and the ability of the troponin-tropomyosin complex to switch actin monomers off, demonstrating a weakening of the damaging effect of the R90P mutation on muscle contractility.


Asunto(s)
Contracción Muscular/genética , Mutación/genética , Oximas/farmacología , Sulfonamidas/farmacología , Tropomiosina/genética , Actinas/metabolismo , Animales , Calcio/metabolismo , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miosinas/metabolismo , Conejos , Troponina/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 318(3): H715-H722, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32083971

RESUMEN

Thin filament hypertrophic cardiomyopathy (HCM) mutations increase myofilament Ca2+ sensitivity and alter Ca2+ handling and buffering. The myosin inhibitor mavacamten reverses the increased contractility caused by HCM thick filament mutations, and we here test its effect on HCM thin filament mutations where the mode of action is not known. Mavacamten (250 nM) partially reversed the increased Ca2+ sensitivity caused by HCM mutations Cardiac troponin T (cTnT) R92Q, and cardiac troponin I (cTnI) R145G in in vitro ATPase assays. The effect of mavacamten was also analyzed in cardiomyocyte models of cTnT R92Q and cTnI R145G containing cytoplasmic and myofilament specific Ca2+ sensors. While mavacamten rescued the hypercontracted basal sarcomere length, the reduced fractional shortening did not improve with mavacamten. Both mutations caused an increase in peak systolic Ca2+ detected at the myofilament, and this was completely rescued by 250 nM mavacamten. Systolic Ca2+ detected by the cytoplasmic sensor was also reduced by mavacamten treatment, although only R145G increased cytoplasmic Ca2+. There was also a reversal of Ca2+ decay time prolongation caused by both mutations at the myofilament but not in the cytoplasm. We thus show that mavacamten reverses some of the Ca2+-sensitive molecular and cellular changes caused by the HCM mutations, particularly altered Ca2+ flux at the myofilament. The reduction of peak systolic Ca2+ as a consequence of mavacamten treatment represents a novel mechanism by which the compound is able to reduce contractility, working synergistically with its direct effect on the myosin motor.NEW & NOTEWORTHY Mavacamten, a myosin inhibitor, is currently in phase-3 clinical trials as a pharmacotherapy for hypertrophic cardiomyopathy (HCM). Its efficacy in HCM caused by mutations in thin filament proteins is not known. We show in reductionist and cellular models that mavacamten can rescue the effects of thin filament mutations on calcium sensitivity and calcium handling although it only partially rescues the contractile cellular phenotype and, in some cases, exacerbates the effect of the mutation.


Asunto(s)
Bencilaminas/farmacología , Calcio/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Corazón/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sarcómeros/efectos de los fármacos , Uracilo/análogos & derivados , Animales , Cardiomiopatía Hipertrófica/genética , Ratones , Mutación , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Troponina T/genética , Troponina T/metabolismo , Uracilo/farmacología
10.
Am J Physiol Heart Circ Physiol ; 319(2): H306-H319, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32618513

RESUMEN

Dilated cardiomyopathy (DCM) is clinically characterized by dilated ventricular cavities and reduced ejection fraction, leading to heart failure and increased thromboembolic risk. Mutations in thin-filament regulatory proteins can cause DCM and have been shown in vitro to reduce contractility and myofilament Ca2+-affinity. In this work we have studied the functional consequences of mutations in cardiac troponin T (R131W), cardiac troponin I (K36Q) and α-tropomyosin (E40K) using adenovirally transduced isolated guinea pig left ventricular cardiomyocytes. We find significantly reduced fractional shortening with reduced systolic Ca2+. Contraction and Ca2+ reuptake times were slowed, which contrast with some findings in murine models of myofilament Ca2+ desensitization. We also observe increased sarcoplasmic reticulum (SR) Ca2+ load and smaller fractional SR Ca2+ release. This corresponds to a reduction in SR Ca2+-ATPase activity and increase in sodium-calcium exchanger activity. We also observe dephosphorylation and nuclear translocation of the nuclear factor of activated T cells (NFAT), with concordant RAC-α-serine/threonine protein kinase (Akt) phosphorylation but no change to extracellular signal-regulated kinase activation in chronically paced cardiomyocytes expressing DCM mutations. These changes in Ca2+ handling and signaling are common to all three mutations, indicating an analogous pathway of disease pathogenesis in thin-filament sarcomeric DCM. Previous work has shown that changes to myofilament Ca2+ sensitivity caused by DCM mutations are qualitatively opposite from hypertrophic cardiomyopathy (HCM) mutations in the same genes. However, we find several common pathways such as increased relaxation times and NFAT activation that are also hallmarks of HCM. This suggests more complex intracellular signaling underpinning DCM, driven by the primary mutation.NEW & NOTEWORTHY Dilated cardiomyopathy (DCM) is a frequently occurring cardiac disorder with a degree of genetic inheritance. We have found that DCM mutations in proteins that regulate the contractile machinery cause alterations to contraction, calcium-handling, and some new signaling pathways that provide stimuli for disease development. We have used guinea pig cells that recapitulate human calcium-handling and introduced the mutations using adenovirus gene transduction to look at the initial triggers of disease before remodeling.


Asunto(s)
Señalización del Calcio , Cardiomiopatía Dilatada/genética , Proteínas de Microfilamentos/genética , Mutación , Contracción Miocárdica , Miocitos Cardíacos/enzimología , Factores de Transcripción NFATC/metabolismo , Proteína Oncogénica v-akt/metabolismo , Función Ventricular Izquierda , Animales , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Células Cultivadas , Predisposición Genética a la Enfermedad , Cobayas , Masculino , Proteínas de Microfilamentos/metabolismo , Fenotipo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo , Troponina I/genética , Troponina I/metabolismo , Troponina T/genética , Troponina T/metabolismo
11.
Biochem Biophys Res Commun ; 523(1): 258-262, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31864708

RESUMEN

Ghost muscle fibres reconstituted with myosin heads labeled with the fluorescent probe 1,5-IAEDANS were used for analysis of muscle fibre dysfunction associated with the R133W mutation in ß-tropomyosin (Tpm2.2). By using polarized microscopy, we showed that at high Ca2+ the R133W mutation in both αß-Tpm heterodimers and ßß-Tpm homodimers decreases the amount of the myosin heads strongly bound to F-actin and the number of switched-on actin monomers, with this effect being stronger for ßß-Tpm. This mutation also inhibits the shifting of the R133W-Tpm strands towards the open position and the efficiency of the cross-bridge work. At low Ca2+, the amount of the strongly bound myosin heads is lower for R133W-Tpms than for WT-Tpms which may contribute to a low myofilament Ca2+-sensitivity of the R133W-Tpms. It is concluded that freezing of the mutant αß- or ßß-Tpm close to the blocked position inhibits the strong binding of the cross-bridges and the switching on of actin monomers which may be the reason for muscle weakness associated with the R133W mutation in ß-tropomyosin. The use of reagents that activate myosin may be appropriate to restore muscle function in patients with the R133W mutation.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Mutación , Tropomiosina/genética , Animales , Calcio/metabolismo , Masculino , Debilidad Muscular/genética , Debilidad Muscular/fisiopatología , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/fisiopatología , Conejos , Tropomiosina/metabolismo
12.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066566

RESUMEN

We have used the technique of polarized microfluorimetry to obtain new insight into the pathogenesis of skeletal muscle disease caused by the Gln147Pro substitution in ß-tropomyosin (Tpm2.2). The spatial rearrangements of actin, myosin and tropomyosin in the single muscle fiber containing reconstituted thin filaments were studied during simulation of several stages of ATP hydrolysis cycle. The angular orientation of the fluorescence probes bound to tropomyosin was found to be changed by the substitution and was characteristic for a shift of tropomyosin strands closer to the inner actin domains. It was observed both in the absence and in the presence of troponin, Ca2+ and myosin heads at all simulated stages of the ATPase cycle. The mutant showed higher flexibility. Moreover, the Gln147Pro substitution disrupted the myosin-induced displacement of tropomyosin over actin. The irregular positioning of the mutant tropomyosin caused premature activation of actin monomers and a tendency to increase the number of myosin cross-bridges in a state of strong binding with actin at low Ca2+.


Asunto(s)
Sustitución de Aminoácidos , Contracción Muscular , Miotonía Congénita/genética , Tropomiosina/química , Actinas/química , Adenosina Trifosfato/metabolismo , Animales , Calcio/química , Calcio/metabolismo , Células Cultivadas , Humanos , Simulación de Dinámica Molecular , Miosinas/química , Miosinas/metabolismo , Dominios Proteicos , Conejos , Tropomiosina/genética , Tropomiosina/metabolismo , Troponina/química , Troponina/metabolismo
13.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580284

RESUMEN

Substitution of Ala for Glu residue in position 173 of γ-tropomyosin (Tpm3.12) is associated with muscle weakness. Here we observe that this mutation increases myofilament Ca2+-sensitivity and inhibits in vitro actin-activated ATPase activity of myosin subfragment-1 at high Ca2+. In order to determine the critical conformational changes in myosin, actin and tropomyosin caused by the mutation, we used the technique of polarized fluorimetry. It was found that this mutation changes the spatial arrangement of actin monomers and myosin heads, and the position of the mutant tropomyosin on the thin filaments in muscle fibres at various mimicked stages of the ATPase cycle. At low Ca2+ the E173A mutant tropomyosin shifts towards the inner domains of actin at all stages of the cycle, and this is accompanied by an increase in the number of switched-on actin monomers and myosin heads strongly bound to F-actin even at relaxation. Contrarily, at high Ca2+ the amount of the strongly bound myosin heads slightly decreases. These changes in the balance of the strongly bound myosin heads in the ATPase cycle may underlie the occurrence of muscle weakness. W7, an inhibitor of troponin Ca2+-sensitivity, restores the increase in the number of myosin heads strongly bound to F-actin at high Ca2+ and stops their strong binding at relaxation, suggesting the possibility of using Ca2+-desensitizers to reduce the damaging effect of the E173A mutation on muscle fibre contractility.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Debilidad Muscular/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Mutación , Sulfonamidas/farmacología , Tropomiosina/genética , Animales , Debilidad Muscular/etiología , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Conejos , Vasodilatadores/farmacología
14.
J Biol Chem ; 293(27): 10487-10499, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29760186

RESUMEN

Mutations in thin filament regulatory proteins that cause hypertrophic cardiomyopathy (HCM) increase myofilament Ca2+ sensitivity. Mouse models exhibit increased Ca2+ buffering and arrhythmias, and we hypothesized that these changes are primary effects of the mutations (independent of compensatory changes) and that increased Ca2+ buffering and altered Ca2+ handling contribute to HCM pathogenesis via activation of Ca2+-dependent signaling. Here, we determined the primary effects of HCM mutations on intracellular Ca2+ handling and Ca2+-dependent signaling in a model system possessing Ca2+-handling mechanisms and contractile protein isoforms closely mirroring the human environment in the absence of potentially confounding remodeling. Using adenovirus, we expressed HCM-causing variants of human troponin-T, troponin-I, and α-tropomyosin (R92Q, R145G, and D175N, respectively) in isolated guinea pig left ventricular cardiomyocytes. After 48 h, each variant had localized to the I-band and comprised ∼50% of the total protein. HCM mutations significantly lowered the Kd of Ca2+ binding, resulting in higher Ca2+ buffering of mutant cardiomyocytes. We observed increased diastolic [Ca2+] and slowed Ca2+ reuptake, coupled with a significant decrease in basal sarcomere length and slowed relaxation. HCM mutant cells had higher sodium/calcium exchanger activity, sarcoplasmic reticulum Ca2+ load, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) activity driven by Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of phospholamban. The ryanodine receptor (RyR) leak/load relationship was also increased, driven by CaMKII-mediated RyR phosphorylation. Altered Ca2+ homeostasis also increased signaling via both calcineurin/NFAT and extracellular signal-regulated kinase pathways. Altered myofilament Ca2+ buffering is the primary initiator of signaling cascades, indicating that directly targeting myofilament Ca2+ sensitivity provides an attractive therapeutic approach in HCM.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cardiomiopatía Hipertrófica/patología , Mutación , Tropomiosina/genética , Troponina I/genética , Troponina T/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Células Cultivadas , Cobayas , Humanos , Miofibrillas/metabolismo , Miofibrillas/patología , Fosforilación , Sarcómeros/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tropomiosina/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo
15.
Biochem Biophys Res Commun ; 515(2): 372-377, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31155291

RESUMEN

Substitution of Ala for Thr residue in 155th position in γ-tropomyosin (Tpm3.12) is associated with muscle weakness. To understand the mechanisms of this defect, we studied the Ca2+-sensitivity of thin filaments in solution and multistep changes in mobility and spatial arrangement of actin, Tpm, and myosin heads during the ATPase cycle in reconstituted muscle fibres, using the polarized fluorescence microscopy. It was shown that the Ala155Thr (A155T) mutation increased the Ca2+-sensitivity of the thin filaments in solution. In the absence of the myosin heads in the muscle fibres, the mutation did not alter the ability of troponin to switch the thin filaments on and off at high and low Ca2+, respectively. However, upon the binding of myosin heads to the thin filaments at low Ca2+, the mutant Tpm was found to be markedly closer to the open position, than the wild-type Tpm. In the presence of the mutant Tpm, switching on of actin monomers and formation of the strong-binding state of the myosin heads were observed at low Ca2+, which indicated a higher myofilament Ca2+-sensitivity. The mutation decreased the amount of myosin heads bound strongly to actin at high Ca2+ and increased the number of these heads at relaxation. It is suggested that direct binding of myosin to Tpm may be one оf the reasons for muscle weakness associated with the A155T mutation. The use of reagents that decrease the Ca2+-sensitivity of the troponin complex may not be adequate to restore muscle function in patients with the A155T mutation.


Asunto(s)
Calcio/metabolismo , Debilidad Muscular/genética , Debilidad Muscular/fisiopatología , Tropomiosina/genética , Tropomiosina/fisiología , Actinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Sustitución de Aminoácidos , Animales , Polarización de Fluorescencia , Humanos , Técnicas In Vitro , Masculino , Debilidad Muscular/etiología , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Mutación Missense , Miofibrillas/metabolismo , Subfragmentos de Miosina/metabolismo , Conejos , Tropomiosina/química , Troponina/metabolismo
16.
J Mol Cell Cardiol ; 121: 287-296, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30048712

RESUMEN

Cysteine and glycine rich protein 3 (CSRP3) encodes Muscle LIM Protein (MLP), a well-established disease gene for Hypertrophic Cardiomyopathy (HCM). MLP, in contrast to the proteins encoded by the other recognised HCM disease genes, is non-sarcomeric, and has important signalling functions in cardiomyocytes. To gain insight into the disease mechanisms involved, we generated a knock-in mouse (KI) model, carrying the well documented HCM-causing CSRP3 mutation C58G. In vivo phenotyping of homozygous KI/KI mice revealed a robust cardiomyopathy phenotype with diastolic and systolic left ventricular dysfunction, which was supported by increased heart weight measurements. Transcriptome analysis by RNA-seq identified activation of pro-fibrotic signalling, induction of the fetal gene programme and activation of markers of hypertrophic signalling in these hearts. Further ex vivo analyses validated the activation of these pathways at transcript and protein level. Intriguingly, the abundance of MLP decreased in KI/KI mice by 80% and in KI/+ mice by 50%. Protein depletion was also observed in cellular studies for two further HCM-causing CSRP3 mutations (L44P and S54R/E55G). We show that MLP depletion is caused by proteasome action. Moreover, MLP C58G interacts with Bag3 and results in a proteotoxic response in the homozygous knock-in mice, as shown by induction of Bag3 and associated heat shock proteins. In conclusion, the newly generated mouse model provides insights into the underlying disease mechanisms of cardiomyopathy caused by mutations in the non-sarcomeric protein MLP. Furthermore, our cellular experiments suggest that protein depletion and proteasomal overload also play a role in other HCM-causing CSPR3 mutations that we investigated, indicating that reduced levels of functional MLP may be a common mechanism for HCM-causing CSPR3 mutations.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Cardiomiopatía Hipertrófica/genética , Corazón/fisiopatología , Proteínas con Dominio LIM/genética , Proteínas Musculares/genética , Animales , Cardiomiopatía Hipertrófica/fisiopatología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Ratones , Mutación , Sarcómeros/genética
17.
Biochem Biophys Res Commun ; 502(2): 209-214, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29792862

RESUMEN

The E41K mutation in TPM2 gene encoding muscle regulatory protein beta-tropomyosin is associated with nemaline myopathy and cap disease. The mutation results in a reduced Ca2+-sensitivity of the thin filaments and in muscle weakness. To elucidate the structural basis of the reduced Ca2+-sensitivity of the thin filaments, we studied multistep changes in spatial arrangement of tropomyosin (Tpm), actin and myosin heads during the ATPase cycle in reconstituted fibers, using the polarized fluorescence microscopy. The E41K mutation inhibits troponin's ability to shift Tpm to the closed position at high Ca2+, thus restraining the transition of the thin filaments from the "off" to the "on" state. The mutation also inhibits the ability of S1 to shift Tpm to the open position, decreases the amount of the myosin heads bound strongly to actin at high Ca2+, but increases the number of such heads at low Ca2+. These changes may contribute to the low Ca2+-sensitivity and muscle weakness. As the mutation has no effect on troponin's ability to switch actin monomers on at high Ca2+ and inhibits their switching off at low Ca2+, the use of reagents that increase the Ca2+-sensitivity of the troponin complex may not be appropriate to restore muscle function in patients with this mutation.


Asunto(s)
Actinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Calcio/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo , Actinas/química , Sustitución de Aminoácidos , Animales , Humanos , Técnicas In Vitro , Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Proteínas Mutantes/química , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Conejos , Tropomiosina/química
18.
Int J Mol Sci ; 19(12)2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30544720

RESUMEN

Point mutations in genes encoding isoforms of skeletal muscle tropomyosin may cause nemaline myopathy, cap myopathy (Cap), congenital fiber-type disproportion (CFTD), and distal arthrogryposis. The molecular mechanisms of muscle dysfunction in these diseases remain unclear. We studied the effect of the E173A, R90P, E150A, and A155T myopathy-causing substitutions in γ-tropomyosin (Tpm3.12) on the position of tropomyosin in thin filaments, and the conformational state of actin monomers and myosin heads at different stages of the ATPase cycle using polarized fluorescence microscopy. The E173A, R90P, and E150A mutations produced abnormally large displacement of tropomyosin to the inner domains of actin and an increase in the number of myosin heads in strong-binding state at low and high Ca2+, which is characteristic of CFTD. On the contrary, the A155T mutation caused a decrease in the amount of such heads at high Ca2+ which is typical for mutations associated with Cap. An increase in the number of the myosin heads in strong-binding state at low Ca2+ was observed for all mutations associated with high Ca2+-sensitivity. Comparison between the typical conformational changes in mutant proteins associated with different myopathies observed with α-, ß-, and γ-tropomyosins demonstrated the possibility of using such changes as tests for identifying the diseases.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Enfermedades Musculares/genética , Enfermedades Musculares/fisiopatología , Proteínas Mutantes/química , Mutación Puntual/genética , Tropomiosina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Calcio/farmacología , Polarización de Fluorescencia , Humanos , Modelos Biológicos , Contracción Muscular , Fibras Musculares Esqueléticas/patología , Proteínas Mutantes/metabolismo , Miosinas/metabolismo , Nucleótidos/farmacología , Unión Proteica , Conformación Proteica , Conejos
19.
J Mol Cell Cardiol ; 102: 94-107, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27914791

RESUMEN

Sarcomere assembly is a highly orchestrated and dynamic process which adapts, during perinatal development, to accommodate growth of the heart. Sarcomeric components, including titin, undergo an isoform transition to adjust ventricular filling. Many sarcomeric genes have been implicated in congenital cardiomyopathies, such that understanding developmental sarcomere transitions will inform the aetiology and treatment. We sought to determine whether Thymosin ß4 (Tß4), a peptide that regulates the availability of actin monomers for polymerization in non-muscle cells, plays a role in sarcomere assembly during cardiac morphogenesis and influences adult cardiac function. In Tß4 null mice, immunofluorescence-based sarcomere analyses revealed shortened thin filament, sarcomere and titin spring length in cardiomyocytes, associated with precocious up-regulation of the short titin isoforms during the postnatal splicing transition. By magnetic resonance imaging, this manifested as diminished stroke volume and limited contractile reserve in adult mice. Extrapolating to an in vitro cardiomyocyte model, the altered postnatal splicing was corrected with addition of synthetic Tß4, whereby normal sarcomere length was restored. Our data suggest that Tß4 is required for setting correct sarcomere length and for appropriate splicing of titin, not only in the heart but also in skeletal muscle. Distinguishing between thin filament extension and titin splicing as the primary defect is challenging, as these events are intimately linked. The regulation of titin splicing is a previously unrecognised role of Tß4 and gives preliminary insight into a mechanism by which titin isoforms may be manipulated to correct cardiac dysfunction.


Asunto(s)
Conectina/genética , Empalme del ARN , Sarcómeros/metabolismo , Timosina/deficiencia , Animales , Ecocardiografía , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Hemodinámica , Masculino , Ratones , Ratones Noqueados , Contracción Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Sarcómeros/ultraestructura
20.
Biochim Biophys Acta ; 1864(3): 260-267, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26708479

RESUMEN

The molecular mechanisms of skeletal muscle dysfunction in congenital myopathies remain unclear. The present study examines the effect of a myopathy-causing mutation Q147P in ß-tropomyosin on the position of tropomyosin on troponin-free filaments and on the actin­myosin interaction at different stages of the ATP hydrolysis cycle using the technique of polarized fluorimetry. Wild-type and Q147P recombinant tropomyosins, actin, and myosin subfragment-1 were modified by 5-IAF, 1,5-IAEDANS or FITC-phalloidin, and 1,5-IAEDANS, respectively, and incorporated into single ghost muscle fibers, containing predominantly actin filaments which were free of troponin and tropomyosin. Despite its reduced affinity for actin in co-sedimentation assay, the Q147P mutant incorporates into the muscle fiber. However, compared to wild-type tropomyosin, it locates closer to the center of the actin filament. The mutant tropomyosin increases the proportion of the strong-binding myosin heads and disrupts the co-operation of actin and myosin heads during the ATPase cycle. These changes are likely to underlie the contractile abnormalities caused by this mutation.


Asunto(s)
Actinas/metabolismo , Enfermedades Musculares/genética , Miosinas/metabolismo , Tropomiosina/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación , Miosinas/genética , Unión Proteica , Tropomiosina/metabolismo , Troponina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA