Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Org Chem ; 86(15): 9979-9993, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34242505

RESUMEN

The reactivities of three isomeric, charged ortho-pyridynes, the 1,2-, 2,3-, and 3,4-didehydropyridinium cations, were examined in the gas phase using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry. The structures of selected product ions were probed using collision-activated dissociation (CAD) experiments in a linear quadrupole ion trap (LQIT) mass spectrometer. Mechanisms based on quantum chemical calculations are proposed for the formation of all major products. The products of the reactions of the charged ortho-pyridynes in the gas phase were found to closely resemble those formed upon reactions of neutral ortho-arynes in solution, but the mechanisms of these reactions exhibit striking differences. Additionally, no radical reactions were observed for any of the charged ortho-pyridynes examined, in contrast to previous proposals that ortho-benzyne can occasionally react via radical mechanisms. Finally, the relative reactivities of those charged gaseous ortho-pyridynes that yielded similar product distributions were found to be affected mainly by the (calculated) vertical electron affinities of the dehydrocarbon sites, which suggests that the reactivity of these species is controlled by polar effects.


Asunto(s)
Isomerismo , Espectrometría de Masas
2.
J Phys Chem A ; 118(37): 8060-6, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24117206

RESUMEN

The α-effect, an enhanced reactivity of nucleophiles with a lone-pair adjacent to the reaction center, has been studied in solution for several decades. The gas-phase α-effect has recently been documented in studies of SN2 reactions as well as in competing reactions for both bare and microhydrated anions. In the present work we extend our studies of the significance of microsolvation on the α-effect, employing methanol as the solvent, in the expectation that the greater stability of the methanol cluster relative to the water cluster will lower the reactivity and thereby allow studies over a wider efficiency range. We compare the gas-phase reactivity of the microsolvated α-nucleophile HOO(-)(CH3OH) to that of microsolvated normal alkoxy nucleophiles, RO(-)(CH3OH) in reactions with CH3Cl and CH3Br. The results reveal enhanced reactivity of HOO(-)(CH3OH) toward both methyl halides relative to the normal nucleophiles, and clearly demonstrate the presence of an α-effect for the microsolvated α-nucleophile. The highly exothermic reactions with methyl bromide result in a smaller Brønsted ßnuc value than observed for methyl chloride, and the α-effect in turn influences the reactions with methyl chloride more than with methyl bromide. Computational investigations reveal that reactions with methyl bromide proceed through earlier transition states with less advanced bond formation compared to the related reactions of methyl chloride. In addition, solvent interactions for HOO(-) are quite different from those with the normal nucleophiles at the transition state, indicating that differential solvation may well contribute to the α-effect. The greater thermodynamic and kinetic stability of the anion-methanol clusters relative to the anion-water clusters accounts well for the differences in the influence of solvation with the two protic polar solvents.

3.
J Am Chem Soc ; 135(41): 15508-14, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24047410

RESUMEN

The α-effect-enhanced reactivity of nucleophiles with a lone-pair adjacent to the attacking center-was recently demonstrated for gas-phase S(N)2 reactions of HOO(-), supporting an intrinsic component of the α-effect. In the present work we explore the gas-phase reactivity of microsolvated nucleophiles in order to investigate in detail how the α-effect is influenced by solvent. We compare the gas-phase reactivity of the microsolvated α-nucleophile HOO(-)(H2O) to that of microsolvated normal alkoxy nucleophiles, RO(-)(H2O), in reaction with CH3Cl using a flowing afterglow-selected ion flow tube instrument. The results reveal enhanced reactivity of HOO(-)(H2O) and clearly demonstrate the presence of an α-effect for the microsolvated α-nucleophile. The association of the nucleophile with a single water molecule results in a larger Brønsted ßnuc value than is the case for the unsolvated nucleophiles. Accordingly, the reactions of the microsolvated nucleophiles proceed through later transition states in which bond formation has progressed further. Calculations show a significant difference in solvent interaction for HOO(-) relative to the normal nucleophiles at the transition states, indicating that differential solvation may well contribute to the α-effect. The reactions of the microsolvated anions with CH3Cl can lead to formation of either the bare Cl(-) anion or the Cl(-)(H2O) cluster. The product distributions show preferential formation of the Cl(-) anion even though the formation of Cl(-)(H2O) would be favored thermodynamically. Although the structure of the HOO(-)(H2O) cluster resembles HO(-)(HOOH), we demonstrate that HOO(-) is the active nucleophile when the cluster reacts.

4.
Chemistry ; 18(3): 969-74, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22180095

RESUMEN

The reactivity of 3-hydroxy-2,4,6-tridehydropyridinium cation was found to be drastically different from the reactivity of 2,4,6-tridehydropyridinium cation. While the latter triradical reacts with tetrahydrofuran, dimethyl disulfide and ally iodide via three consecutive atom or group abstractions, the former triradical exhibits this behavior only with tetrahydrofuran. Only a single atom or group abstraction was observed for the 3-hydroxy-2,4,6-tridehydropyridinium cation upon interaction with dimethyl disulfide and allyl iodide. This change in reactivity is caused by the hydroxyl group that strengthens the interactions between the two radical sites adjacent to it, thus reducing their reactivity. This explanation is supported by the observation of similar behavior for related biradicals.

5.
J Phys Chem A ; 116(12): 3089-93, 2012 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-22352890

RESUMEN

Recent studies have shown that the reactivity of the 4-dehydropyridinium cation significantly differs from the reactivities of its isomers toward tetrahydrofuran. While only hydrogen atom abstraction was observed for the 2- and 3-dehydropyridinium cations, nonradical reactions were observed for the 4-isomer. In order to learn more about these reactions, the gas-phase reactivities of the 4-dehydropyridinium cation and several of its derivatives toward tetrahydrofuran were investigated in a Fourier transform ion electron resonance mass spectrometer. Both radical and nonradical reactions were observed for most of these positively charged radicals. The major parameter determining whether nonradical reactions occur was found to be the electron affinity of the radicals--only those with relatively high electron affinities underwent nonradical reactions. The reactivities of the monoradicals are also affected by hydrogen bonding and steric effects.


Asunto(s)
Furanos/química , Compuestos de Piridinio/química , Cationes , Electrones , Enlace de Hidrógeno , Isomerismo , Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
6.
J Am Soc Mass Spectrom ; 25(2): 159-68, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24346962

RESUMEN

The enhanced reactivity of α-nucleophiles, which contain an electron lone pair adjacent to the reactive site, has been demonstrated in solution and in the gas phase and, recently, for the gas-phase S(N)2 reactions of the microsolvated HOO(-)(H2O) ion with methyl chloride. In the present work, we continue to explore the significance of microsolvation on the α-effect as we compare the gas-phase reactivity of the microsolvated α-nucleophile HOO(-)(H2O) with that of microsolvated normal alkoxy nucleophiles, RO(-)(H2O), in reactions with methyl formate, where three competing reactions are possible. The results reveal enhanced reactivity of HOO(-)(H2O) towards methyl formate, and clearly demonstrate the presence of an overall α-effect for the reactions of the microsolvated α-nucleophile. The association of the nucleophiles with a single water molecule significantly lowers the degree of proton abstraction and increases the S(N)2 and B(AC)2 reactivity compared with the unsolvated analogs. HOO(-)(H2O) reacts with methyl formate exclusively via the B(AC)2 channel. While microsolvation lowers the overall reaction efficiency, it enhances the B(AC)2 reaction efficiency for all anions compared with the unsolvated analogs. This may be explained by participation of the solvent water molecule in the B(AC)2 reaction in a way that continuously stabilizes the negative charge throughout the reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA