Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802026

RESUMEN

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma , ADN/genética , Pinzas Ópticas
2.
Trends Biochem Sci ; 48(4): 321-330, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36357311

RESUMEN

The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability.


Asunto(s)
Cromatina , Metiltransferasas , Metiltransferasas/metabolismo , Metilación , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica
3.
Mutagenesis ; 38(4): 192-200, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37300447

RESUMEN

The use of error-corrected Next Generation Sequencing (ecNG) to determine mutagenicity has been a subject of growing interest and potentially a disruptive technology that could supplement, and in time, replace current testing paradigms in preclinical safety assessment. Considering this, a Next Generation Sequencing Workshop was held at the Royal Society of Medicine in London in May 2022, supported by the United Kingdom Environmental Mutagen Society (UKEMS) and TwinStrand Biosciences (WA, USA), to discuss progress and future applications of this technology. In this meeting report, the invited speakers provide an overview of the Workshop topics covered and identify future directions for research. In the area of somatic mutagenesis, several speakers reviewed recent progress made with correlating ecNGS to classic in vivo transgenic rodent mutation assays as well as exploring the use of this technology directly in humans and animals, and in complex organoid models. Additionally, ecNGS has been used for detecting off-target effects of gene editing tools and emerging data suggest ecNGS potential to measure clonal expansion of cells carrying mutations in cancer driver genes as an early marker of carcinogenic potential and for direct human biomonitoring. As such, the workshop demonstrated the importance of raising awareness and support for advancing the science of ecNGS for mutagenesis, gene editing, and carcinogenesis research. Furthermore, the potential of this new technology to contribute to advances in drug and product development and improve safety assessment was extensively explored.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutágenos , Animales , Humanos , Londres , Mutagénesis , Mutación , Carcinogénesis , Genómica
4.
Genome Res ; 29(1): 74-84, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552104

RESUMEN

Repair of UV-induced DNA damage requires chromatin remodeling. How repair is initiated in chromatin remains largely unknown. We recently demonstrated that global genome-nucleotide excision repair (GG-NER) in chromatin is organized into domains in relation to open reading frames. Here, we define these domains, identifying the genomic locations from which repair is initiated. By examining DNA damage-induced changes in the linear structure of nucleosomes at these sites, we demonstrate how chromatin remodeling is initiated during GG-NER. In undamaged cells, we show that the GG-NER complex occupies chromatin, establishing the nucleosome structure at these genomic locations, which we refer to as GG-NER complex binding sites (GCBSs). We demonstrate that these sites are frequently located at genomic boundaries that delineate chromosomally interacting domains (CIDs). These boundaries define domains of higher-order nucleosome-nucleosome interaction. We demonstrate that initiation of GG-NER in chromatin is accompanied by the disruption of dynamic nucleosomes that flank GCBSs by the GG-NER complex.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Reparación del ADN/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Genoma Fúngico/fisiología , Nucleosomas , Saccharomyces cerevisiae , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Genome Res ; 26(10): 1376-1387, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27470111

RESUMEN

The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome-NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome.


Asunto(s)
Cromatina/genética , Reparación del ADN , Genoma Fúngico , Acetilación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Tasa de Mutación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 43(19): 9133-46, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26400171

RESUMEN

The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.


Asunto(s)
Benzo(a)pireno/química , Carcinógenos/química , Aductos de ADN/química , Daño del ADN , Genes p53 , Neoplasias Pulmonares/genética , Mutación , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/química , Secuencia de Bases , Codón , ADN/química , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Fumar
7.
Nucleic Acids Res ; 43(15): 7360-70, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26150418

RESUMEN

Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the absence of DNA damage the yeast Rad4-Rad23 nucleotide excision repair complex binds to the promoters of certain DNA damage response genes including DUN1, inhibiting their expression. UV radiation promotes the loss of occupancy of the Rad4-Rad23 complex from the regulatory regions of these genes, enabling their induction and thereby controlling the production of dNTPs. We demonstrate that this regulatory mechanism, which is dependent on the ubiquitination of Rad4 by the GG-NER E3 ligase, promotes UV survival in yeast cells. These results support an unanticipated regulatory mechanism that integrates ubiquitination of NER DNA repair factors with the regulation of the transcriptional response controlling dNTP production and cellular survival after UV damage.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleótidos/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Ubiquitinación , Rayos Ultravioleta , Daño del ADN , Regiones Promotoras Genéticas , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo , Levaduras/efectos de la radiación
8.
Proc Natl Acad Sci U S A ; 110(4): 1434-9, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23292936

RESUMEN

Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.


Asunto(s)
Antígenos CD/metabolismo , Carcinoma Basocelular/inmunología , Carcinoma Basocelular/patología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Animales , Carcinoma Basocelular/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos , Queratinas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Neoplasias Cutáneas/metabolismo , Receptor Smoothened , Trasplante Heterólogo , Ensayo de Tumor de Célula Madre
9.
Nucleic Acids Res ; 41(19): 9006-19, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23925126

RESUMEN

Nucleotide excision repair (NER) is critical for maintaining genome integrity. How chromatin dynamics are regulated to facilitate this process in chromatin is still under exploration. We show here that a histone H2A variant, Htz1 (H2A.Z), in nucleosomes has a positive function in promoting efficient NER in yeast. Htz1 inherently enhances the occupancy of the histone acetyltransferase Gcn5 on chromatin to promote histone H3 acetylation after UV irradiation. Consequently, this results in an increased binding of a NER protein, Rad14, to damaged DNA. Cells without Htz1 show increased UV sensitivity and defective removal of UV-induced DNA damage in the Htz1-bearing nucleosomes at the repressed MFA2 promoter, but not in the HMRa locus where Htz1 is normally absent. Thus, the effect of Htz1 on NER is specifically relevant to its presence in chromatin within a damaged region. The chromatin accessibility to micrococcal nuclease in the MFA2 promoter is unaffected by HTZ1 deletion. Acetylation on previously identified lysines of Htz1 plays little role in NER or cell survival after UV. In summary, we have identified a novel aspect of chromatin that regulates efficient NER, and we provide a model for how Htz1 influences NER in Htz1 nucleosomes.


Asunto(s)
Reparación del ADN , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Adenosina Trifosfatasas/genética , Cromatina/química , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Eliminación de Gen , Histona Acetiltransferasas/metabolismo , Histonas/genética , Lipoproteínas/genética , Viabilidad Microbiana , Feromonas/genética , Regiones Promotoras Genéticas , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Rayos Ultravioleta
10.
PLoS Genet ; 7(6): e1002124, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21698136

RESUMEN

Global genome nucleotide excision repair removes DNA damage from transcriptionally silent regions of the genome. Relatively little is known about the molecular events that initiate and regulate this process in the context of chromatin. We've shown that, in response to UV radiation-induced DNA damage, increased histone H3 acetylation at lysine 9 and 14 correlates with changes in chromatin structure, and these alterations are associated with efficient global genome nucleotide excision repair in yeast. These changes depend on the presence of the Rad16 protein. Remarkably, constitutive hyperacetylation of histone H3 can suppress the requirement for Rad7 and Rad16, two components of a global genome repair complex, during repair. This reveals the connection between histone H3 acetylation and DNA repair. Here, we investigate how chromatin structure is modified following UV irradiation to facilitate DNA repair in yeast. Using a combination of chromatin immunoprecipitation to measure histone acetylation levels, histone acetylase occupancy in chromatin, MNase digestion, or restriction enzyme endonuclease accessibility assays to analyse chromatin structure, and finally nucleotide excision repair assays to examine DNA repair, we demonstrate that global genome nucleotide excision repair drives UV-induced chromatin remodelling by controlling histone H3 acetylation levels in chromatin. The concerted action of the ATPase and C3HC4 RING domains of Rad16 combine to regulate the occupancy of the histone acetyl transferase Gcn5 on chromatin in response to UV damage. We conclude that the global genome repair complex in yeast regulates UV-induced histone H3 acetylation by controlling the accessibility of the histone acetyl transferase Gcn5 in chromatin. The resultant changes in histone H3 acetylation promote chromatin remodelling necessary for efficient repair of DNA damage. Recent evidence suggests that GCN5 plays a role in NER in human cells. Our work provides important insight into how GG-NER operates in chromatin.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Daño del ADN , Reparación del ADN/genética , Saccharomyces cerevisiae , Acetilación/efectos de la radiación , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lipoproteínas/genética , Proteínas Nucleares/genética , Feromonas/genética , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
11.
Noncoding RNA Res ; 9(3): 649-658, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38577022

RESUMEN

In recent years, various long non-coding RNAs (lncRNAs) involved in DNA damage response (DDR) have been identified and studied to deepen our understanding. However, there are rare reports on the association between lncRNAs and base excision repair (BER). Our designed DNA microarray identified dozens of functionally unknown lncRNAs, and their transcription levels significantly increased upon exposure to DNA damage inducers. One of them, named LIP (Long noncoding RNA Interacts with PARP-1), exhibited a significant alteration in transcription in response to methyl methanesulfonate (MMS) and temozolomide (TMZ) treatments. LIP knockdown or knockout cell lines are sensitive to MMS and TMZ, indicating that LIP plays a crucial role in DDR. The loss or insufficiency of LIP significantly influences the efficiency of BER in human cells, and it suggests that LIP participates in the BER pathway. The interaction between LIP and a key factor in BER, poly (ADP-ribose) polymerase 1 (PARP-1), has been confirmed. We identified and characterized LIP, a lncRNA, which is involved in DDR, significantly influences BER efficiency, and interacts with the BER key factor PARP-1. This advances our understanding of the connection between lncRNAs and BER, presenting the potential for the discovery of new drug targets.

12.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260523

RESUMEN

Mammalian DNA replication employs several RecQ DNA helicases to orchestrate the faithful duplication of genetic information. Helicase function is often coupled to the activity of specific nucleases, but how helicase and nuclease activities are co-directed is unclear. Here we identify the inactive ubiquitin-specific protease, USP50, as a ubiquitin-binding and chromatin-associated protein required for ongoing replication, fork restart, telomere maintenance and cellular survival during replicative stress. USP50 supports WRN:FEN1 at stalled replication forks, suppresses MUS81-dependent fork collapse and restricts double-strand DNA breaks at GC-rich sequences. Surprisingly we find that cells depleted for USP50 and recovering from a replication block exhibit increased DNA2 and RECQL4 foci and that the defects in ongoing replication, poor fork restart and increased fork collapse seen in these cells are mediated by DNA2, RECQL4 and RECQL5. These data define a novel ubiquitin-dependent pathway that promotes the balance of helicase: nuclease use at ongoing and stalled replication forks.

13.
Nat Commun ; 15(1): 8102, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284827

RESUMEN

Mammalian DNA replication relies on various DNA helicase and nuclease activities to ensure accurate genetic duplication, but how different helicase and nuclease activities are properly directed remains unclear. Here, we identify the ubiquitin-specific protease, USP50, as a chromatin-associated protein required to promote ongoing replication, fork restart, telomere maintenance, cellular survival following hydroxyurea or pyridostatin treatment, and suppression of DNA breaks near GC-rich sequences. We find that USP50 supports proper WRN-FEN1 localisation at or near stalled replication forks. Nascent DNA in cells lacking USP50 shows increased association of the DNA2 nuclease and RECQL4 and RECQL5 helicases and replication defects in cells lacking USP50, or FEN1 are driven by these proteins. Consequently, suppression of DNA2 or RECQL4/5 improves USP50-depleted cell resistance to agents inducing replicative stress and restores telomere stability. These data define an unexpected regulatory protein that promotes the balance of helicase and nuclease use at ongoing and stalled replication forks.


Asunto(s)
ADN Helicasas , Replicación del ADN , RecQ Helicasas , Helicasa del Síndrome de Werner , Humanos , Cromatina/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , Endonucleasas de ADN Solapado/metabolismo , Endonucleasas de ADN Solapado/genética , Células HEK293 , Células HeLa , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Telómero/metabolismo , Telómero/genética , Homeostasis del Telómero/efectos de los fármacos , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Helicasa del Síndrome de Werner/metabolismo , Helicasa del Síndrome de Werner/genética
14.
Nucleic Acids Res ; 39(2): e10, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21062813

RESUMEN

DNA damage occurs via endogenous and exogenous genotoxic agents and compromises a genome's integrity. Knowing where damage occurs within a genome is crucial to understanding the repair mechanisms which protect this integrity. This paper describes a new development based on microarray technology which uses ultraviolet light induced DNA damage as a paradigm to determine the position and frequency of DNA damage and its subsequent repair throughout the entire yeast genome.


Asunto(s)
Daño del ADN , Reparación del ADN , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteínas de Unión al ADN/genética , Genoma Fúngico , Mutación , Dímeros de Pirimidina/análisis , Rayos Ultravioleta , Levaduras/genética
15.
Nucleic Acids Res ; 38(14): 4675-86, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20385597

RESUMEN

Very little is currently known about how nucleotide excision repair (NER) functions at the ends of chromosomes. To examine this, we introduced the URA3 gene into either transcriptionally active or repressed subtelomeric regions of the yeast genome. This enabled us to examine the repair of ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs) in identical sequences under both circumstances. We found that NER is significantly more efficient in the non-repressed subtelomere than the repressed one. At the non-repressed subtelomere, UV radiation stimulates both histones H3 and H4 acetylation in a similar fashion to that seen at other regions of the yeast genome. These modifications occur regardless of the presence of the Sir2 histone deacetylase. On the other hand, at the repressed subtelomere, where repair is much less efficient, UV radiation is unable to stimulate histone H4 or H3 acetylation in the presence of Sir2. In the absence of Sir2 both of these UV-induced modifications are detected, resulting in a significant increase in NER efficiency in the region. Our experiments reveal that there are instances in the yeast genome where the maintenance of the existing chromatin structures dominates over the action of chromatin modifications associated with efficient NER.


Asunto(s)
Cromatina/química , Reparación del ADN , Silenciador del Gen , Histonas/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/fisiología , Sirtuina 2/fisiología , Acetilación , Ciclo Celular/efectos de la radiación , Cromatina/metabolismo , Cromosomas Fúngicos , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Nucleasa Microcócica , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Transcripción Genética , Rayos Ultravioleta
16.
Nat Commun ; 13(1): 3989, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810156

RESUMEN

Understanding how breaks form and are repaired in the genome depends on the accurate measurement of the frequency and position of DNA double strand breaks (DSBs). This is crucial for identification of a chemical's DNA damage potential and for safe development of therapies, including genome editing technologies. Current DSB sequencing methods suffer from high background levels, the inability to accurately measure low frequency endogenous breaks and high sequencing costs. Here we describe INDUCE-seq, which overcomes these problems, detecting simultaneously the presence of low-level endogenous DSBs caused by physiological processes, and higher-level recurrent breaks induced by restriction enzymes or CRISPR-Cas nucleases. INDUCE-seq exploits an innovative NGS flow cell enrichment method, permitting the digital detection of breaks. It can therefore be used to determine the mechanism of DSB repair and to facilitate safe development of therapeutic genome editing. We further discuss how the method can be adapted to detect other genomic features.


Asunto(s)
Roturas del ADN de Doble Cadena , Edición Génica , Sistemas CRISPR-Cas/genética , ADN/genética , Reparación del ADN/genética , Endonucleasas/genética , Edición Génica/métodos , Genómica
17.
Sci Adv ; 8(45): eadd3686, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36351018

RESUMEN

The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation-dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins' genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome.


Asunto(s)
Replicación del ADN , Genoma Humano , Humanos , Origen de Réplica , Mutación , Mutagénesis
18.
BMC Chem ; 15(1): 51, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521464

RESUMEN

BACKGROUND: Local sequence context is known to have an impact on the mutational pattern seen in cancer. The RAS genes and a smoking carcinogen, Benzo[a]pyrene diol epoxide (BPDE), have been utilised to explore these context effects. BPDE is known to form an adduct at the guanines in a number of RAS gene sites, KRAS codons 12, 13 and 14, NRAS codon 12, and HRAS codons 12 and 14. RESULTS: Molecular modelling techniques, along with multivariate analysis, have been utilised to determine the sequence influenced differences between BPDE-adducted RAS gene sequences as well as the local distortion caused by the adducts. CONCLUSIONS: We conclude that G:C > T:A mutations at KRAS codon 12 in the tumours of lung cancer patients (who smoke), proposed to be predominantly caused by BPDE, are due to the effect of the interaction methyl group at the C5 position of the thymine base in the KRAS sequence with the BPDE carcinogen investigated causing increased distortion. We further suggest methylated cytosine would have a similar effect, showing the importance of methylation in cancer development.

19.
DNA Repair (Amst) ; 8(2): 146-52, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19041427

RESUMEN

A typical view of how DNA repair functions in chromatin usually depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin on the repair process. It may be that in this current interpretation the repair mechanisms are 'tilting at windmills', fighting an imaginary foe. An emerging picture suggests that we should not consider chromatin as an inhibitory force to be overcome like some quixotic giant by the DNA repair processes. Instead we should now recognize that DNA repair and chromatin metabolism are inextricably and mechanistically linked. Here we discuss the latest findings which are beginning to reveal how changes in chromatin dynamics integrate with the DNA repair process in response to UV induced DNA damage, with an emphasis on events in the yeast Saccharomyces cerevisiae.


Asunto(s)
Cromosomas/metabolismo , Reparación del ADN , ADN/metabolismo , Animales , Cromatina/metabolismo , Daño del ADN , Genoma/genética , Humanos
20.
Methods ; 48(1): 23-34, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19269326

RESUMEN

In recent years a great deal of progress has been made in understanding how the various DNA repair mechanisms function when DNA is assembled into chromatin. In the case of nucleotide excision repair, a core group of DNA repair proteins is required in vitro to observe DNA repair activity in damaged DNA devoid of chromatin structure. This group of proteins is not sufficient to promote repair in the same DNA when assembled into nucleosomes; the first level of chromatin compaction. Clearly other factors are required for efficient DNA repair of chromatin. For some time chromatin has been considered a barrier to be overcome, and inhibitory to DNA metabolic processes including DNA repair. However, an emerging picture suggests a fascinating link at the interface of chromatin metabolism and DNA repair. In this view these two fundamental processes are mechanistically intertwined and function in concert to bring about regulated DNA repair throughout the genome. Light from the darkness has come as a result of many elegant studies performed by a number of research groups. Here we describe two techniques developed in our laboratories which we hope have contributed to our understanding in this arena.


Asunto(s)
Reparación del ADN , Nucleosomas , Nucleótidos/genética , Cromatina/metabolismo , Daño del ADN , ADN de Hongos/genética , Modelos Genéticos , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA