Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 186(7): 1369-1381.e17, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001501

RESUMEN

Memories initially formed in hippocampus gradually stabilize to cortex over weeks-to-months for long-term storage. The mechanistic details of this brain re-organization remain poorly understood. We recorded bulk neural activity in circuits that link hippocampus and cortex as mice performed a memory-guided virtual-reality task over weeks. We identified a prominent and sustained neural correlate of memory in anterior thalamus, whose inhibition substantially disrupted memory consolidation. More strikingly, gain amplification enhanced consolidation of otherwise unconsolidated memories. To gain mechanistic insights, we developed a technology for simultaneous cellular-resolution imaging of hippocampus, thalamus, and cortex throughout consolidation. We found that whereas hippocampus equally encodes multiple memories, the anteromedial thalamus preferentially encodes salient memories, and gradually increases correlations with cortex to facilitate tuning and synchronization of cortical ensembles. We thus identify a thalamo-cortical circuit that gates memory consolidation and propose a mechanism suitable for the selection and stabilization of hippocampal memories into longer-term cortical storage.


Asunto(s)
Consolidación de la Memoria , Memoria a Largo Plazo , Ratones , Animales , Memoria a Largo Plazo/fisiología , Tálamo/fisiología , Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Encéfalo
2.
bioRxiv ; 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36747720

RESUMEN

Memories initially formed in hippocampus gradually stabilize to cortex, over weeks-to-months, for long-term storage. The mechanistic details of this brain re-organization process remain poorly understood. In this study, we developed a virtual-reality based behavioral task and observed neural activity patterns associated with memory reorganization and stabilization over weeks-long timescales. Initial photometry recordings in circuits that link hippocampus and cortex revealed a unique and prominent neural correlate of memory in anterior thalamus that emerged in training and persisted for several weeks. Inhibition of the anteromedial thalamus-to-anterior cingulate cortex projections during training resulted in substantial memory consolidation deficits, and gain amplification more strikingly, was sufficient to enhance consolidation of otherwise unconsolidated memories. To provide mechanistic insights, we developed a new behavioral task where mice form two memories, of which only the more salient memory is consolidated, and also a technology for simultaneous and longitudinal cellular resolution imaging of hippocampus, thalamus, and cortex throughout the consolidation window. We found that whereas hippocampus equally encodes multiple memories, the anteromedial thalamus forms preferential tuning to salient memories, and establishes inter-regional correlations with cortex, that are critical for synchronizing and stabilizing cortical representations at remote time. Indeed, inhibition of this thalamo-cortical circuit while imaging in cortex reveals loss of contextual tuning and ensemble synchrony in anterior cingulate, together with behavioral deficits in remote memory retrieval. We thus identify a thalamo-cortical circuit that gates memory consolidation and propose a mechanism suitable for the selection and stabilization of hippocampal memories into longer term cortical storage.

3.
bioRxiv ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37905153

RESUMEN

Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC) -to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.

4.
J Genet Genomics ; 44(6): 319-326, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28645777

RESUMEN

Feeding and sleep are highly conserved, interconnected behaviors essential for survival. Starvation has been shown to potently suppress sleep across species; however, whether satiety promotes sleep is still unclear. Here we use the fruit fly, Drosophila melanogaster, as a model organism to address the interaction between feeding and sleep. We first monitored the sleep of flies that had been starved for 24 h and found that sleep amount increased in the first 4 h after flies were given food. Increased sleep after starvation was due to an increase in sleep bout number and average sleep bout length. Mutants of translin or adipokinetic hormone, which fail to suppress sleep during starvation, still exhibited a sleep increase after starvation, suggesting that sleep increase after starvation is not a consequence of sleep loss during starvation. We also found that feeding activity and food consumption were higher in the first 10-30 min after starvation. Restricting food consumption in starved flies to 30 min was sufficient to increase sleep for 1 h. Although flies ingested a comparable amount of food at differing sucrose concentrations, sleep increase after starvation on a lower sucrose concentration was undetectable. Taken together, our results suggest that increased food intake after starvation enhances sleep and reveals a novel relationship between feeding and sleep.


Asunto(s)
Drosophila melanogaster/fisiología , Ingestión de Alimentos , Inanición/fisiopatología , Animales , Relación Dosis-Respuesta a Droga , Drosophila melanogaster/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Sueño/efectos de los fármacos , Sacarosa/farmacología
5.
PLoS One ; 10(7): e0131275, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147198

RESUMEN

Animals maximize fitness by modulating sleep and foraging strategies in response to changes in nutrient availability. Wild populations of the fruit fly, Drosophila melanogaster, display highly variable levels of starvation and desiccation resistance that differ in accordance with geographic location, nutrient availability, and evolutionary history. Further, flies potently modulate sleep in response to changes in food availability, and selection for starvation resistance enhances sleep, revealing strong genetic relationships between sleep and nutrient availability. To determine the genetic and evolutionary relationship between sleep and nutrient deprivation, we assessed sleep in flies selected for desiccation or starvation resistance. While starvation resistant flies have higher levels of triglycerides, desiccation resistant flies have enhanced glycogen stores, indicative of distinct physiological adaptations to food or water scarcity. Strikingly, selection for starvation resistance, but not desiccation resistance, leads to increased sleep, indicating that enhanced sleep is not a generalized consequence of higher energy stores. Thermotolerance is not altered in starvation or desiccation resistant flies, providing further evidence for context-specific adaptation to environmental stressors. F2 hybrid flies were generated by crossing starvation selected flies with desiccation selected flies, and the relationship between nutrient deprivation and sleep was examined. Hybrids exhibit a positive correlation between starvation resistance and sleep, while no interaction was detected between desiccation resistance and sleep, revealing that prolonged sleep provides an adaptive response to starvation stress. Therefore, these findings demonstrate context-specific evolution of enhanced sleep in response to chronic food deprivation, and provide a model for understanding the evolutionary relationship between sleep and nutrient availability.


Asunto(s)
Adaptación Fisiológica/fisiología , Drosophila melanogaster/fisiología , Sueño/fisiología , Inanición/fisiopatología , Estrés Fisiológico/fisiología , Animales , Tamaño Corporal , Cruzamientos Genéticos , Desecación , Resistencia a la Enfermedad , Drosophila melanogaster/química , Metabolismo Energético , Femenino , Privación de Alimentos/fisiología , Glucógeno/análisis , Calor , Proteínas de Insectos/análisis , Estimación de Kaplan-Meier , Masculino , Actividad Motora , Fenotipo , Selección Genética , Triglicéridos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA