Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Annu Rev Neurosci ; 45: 151-175, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803588

RESUMEN

The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Corteza Cerebelosa/fisiología , Cerebelo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología
2.
Nature ; 613(7944): 543-549, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36418404

RESUMEN

The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.


Asunto(s)
Corteza Cerebelosa , Red Nerviosa , Vías Nerviosas , Neuronas , Animales , Ratones , Corteza Cerebelosa/citología , Corteza Cerebelosa/fisiología , Corteza Cerebelosa/ultraestructura , Redes Neurales de la Computación , Neuronas/citología , Neuronas/fisiología , Neuronas/ultraestructura , Red Nerviosa/citología , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Microscopía Electrónica de Transmisión
3.
Nature ; 598(7879): 214-219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616064

RESUMEN

The cerebellar cortex is a well-studied brain structure with diverse roles in motor learning, coordination, cognition and autonomic regulation. However,  a complete inventory of cerebellar cell types is currently lacking. Here, using recent advances in high-throughput transcriptional profiling1-3, we molecularly define cell types across individual lobules of the adult mouse cerebellum. Purkinje neurons showed considerable regional specialization, with the greatest diversity occurring in the posterior lobules. For several types of cerebellar interneuron, the molecular variation within each type was more continuous, rather than discrete. In particular, for the unipolar brush cells-an interneuron population previously subdivided into discrete populations-the continuous variation in gene expression was associated with a graded continuum of electrophysiological properties. Notably, we found that molecular layer interneurons were composed of two molecularly and functionally distinct types. Both types show a continuum of morphological variation through the thickness of the molecular layer, but electrophysiological recordings revealed marked differences between the two types in spontaneous firing, excitability and electrical coupling. Together, these findings provide a comprehensive cellular atlas of the cerebellar cortex, and outline a methodological and conceptual framework for the integration of molecular, morphological and physiological ontologies for defining brain cell types.


Asunto(s)
Corteza Cerebelosa/citología , Perfilación de la Expresión Génica , Transcriptoma , Adulto , Animales , Atlas como Asunto , Electrofisiología , Femenino , Humanos , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/clasificación , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo
4.
J Neurosci ; 43(34): 6035-6045, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37507229

RESUMEN

Unipolar brush cells (UBCs) in the cerebellum and dorsal cochlear nucleus (DCN) perform temporal transformations by converting brief mossy fiber bursts into long-lasting responses. In the cerebellar UBC population, mixing inhibition with graded mGluR1-dependent excitation leads to a continuum of temporal responses. In the DCN, it has been thought that mGluR1 contributes little to mossy fiber responses and that there are distinct excitatory and inhibitory UBC subtypes. Here, we investigate UBC response properties using noninvasive cell-attached recordings in the DCN of mice of either sex. We find a continuum of responses to mossy fiber bursts ranging from 100 ms excitation to initial inhibition followed by several seconds of excitation to inhibition lasting for hundreds of milliseconds. Pharmacological interrogation reveals excitatory responses are primarily mediated by mGluR1 Thus, UBCs in both the DCN and cerebellum rely on mGluR1 and have a continuum of response durations. The continuum of responses in the DCN may allow more flexible and efficient temporal processing than can be achieved with distinct excitatory and inhibitory populations.SIGNIFICANCE STATEMENT UBCs are specialized excitatory interneurons in cerebellar-like structures that greatly prolong the temporal responses of mossy fiber inputs. They are thought to help cancel out self-generated signals. In the DCN, the prevailing view was that there are two distinct ON and OFF subtypes of UBCs. Here, we show that instead the UBC population has a continuum of response properties. Many cells show suppression and excitation consecutively, and the response durations vary considerably. mGluR1s are crucial in generating a continuum of responses. To understand how UBCs contribute to temporal processing, it is essential to consider the continuous variations of UBC responses, which have advantages over just having opposing ON/OFF subtypes of UBCs.


Asunto(s)
Núcleo Coclear , Ratones , Animales , Fibras Nerviosas/fisiología , Neuronas/fisiología , Corteza Cerebelosa/fisiología , Cerebelo/fisiología
6.
J Neurosci ; 42(40): 7581-7593, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35995561

RESUMEN

Purkinje cells (PCs) are spontaneously active neurons of the cerebellar cortex that inhibit glutamatergic projection neurons within the deep cerebellar nuclei (DCN) that provide the primary cerebellar output. Brief reductions of PC firing rapidly increase DCN neuron firing. However, prolonged reductions of PC inhibition, as seen in some disease states, certain types of transgenic mice, during optogenetic suppression of PC firing, and in acute slices of the cerebellum, do not lead to large, sustained increases in DCN firing. Here we test whether DCN neurons undergo spike frequency adaptation that could account for these properties. We perform current-clamp recordings at near physiological temperature in acute brain slices from mice of both sexes to examine how DCN neurons respond to prolonged depolarizations. DCN neuron adaptation is exceptionally slow and bidirectional. A depolarizing current step evokes large initial increases in firing that decay to ∼20% of the initial increase within ∼10 s. We find that spike frequency adaptation in DCN neurons is mediated by a novel mechanism that is independent of the most promising candidates, including calcium entry and Na+-activated potassium channels mediated by Slo2.1 and Slo2.2 Slow adaptation allows DCN neurons to gradually and bidirectionally adapt to prolonged currents but to respond linearly to current injection on rapid timescales. This suggests that an important consequence of slow adaptation is that DCN neurons respond linearly to the rate of PC firing on rapid timescales but adapt to slow firing rate changes of PCs on long timescales.SIGNIFICANCE STATEMENT Excitatory neurons in the cerebellar nuclei provide the primary output from the cerebellum. This study finds that these neurons exhibit very slow bidirectional spike frequency adaptation that has important implications for cerebellar function. This mechanism allows neurons in the cerebellar nuclei to adapt to long-lasting changes in synaptic drive while also remaining responsive to short-term changes in excitatory or inhibitory drive.


Asunto(s)
Núcleos Cerebelosos , Neuronas , Masculino , Femenino , Ratones , Animales , Núcleos Cerebelosos/fisiología , Neuronas/fisiología , Células de Purkinje/fisiología , Cerebelo , Interneuronas , Ratones Transgénicos , Potenciales de Acción/fisiología , Canales de potasio activados por Sodio , Proteínas del Tejido Nervioso
7.
Nature ; 551(7681): 503-506, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29088700

RESUMEN

At most synapses in the brain, short-term plasticity dynamically modulates synaptic strength. Rapid frequency-dependent changes in synaptic strength have key roles in sensory adaptation, gain control and many other neural computations. However, some auditory, vestibular and cerebellar synapses maintain constant strength over a wide range of firing frequencies, and as a result efficiently encode firing rates. Despite its apparent simplicity, frequency-invariant transmission is difficult to achieve because of inherent synaptic nonlinearities. Here we study frequency-invariant transmission at synapses from Purkinje cells to deep cerebellar nuclei and at vestibular synapses in mice. Prolonged activation of these synapses leads to initial depression, which is followed by steady-state responses that are frequency invariant for their physiological activity range. We find that synaptotagmin 7 (Syt7), a calcium sensor for short-term facilitation, is present at both synapses. It was unclear why a sensor for facilitation would be present at these and other depressing synapses. We find that at Purkinje cell and vestibular synapses, Syt7 supports facilitation that is normally masked by depression, which can be revealed in wild-type mice but is absent in Syt7 knockout mice. In wild-type mice, facilitation increases with firing frequency and counteracts depression to produce frequency-invariant transmission. In Syt7-knockout mice, Purkinje cell and vestibular synapses exhibit conventional use-dependent depression, weakening to a greater extent as the firing frequency is increased. Presynaptic rescue of Syt7 expression restores both facilitation and frequency-invariant transmission. Our results identify a function for Syt7 at synapses that exhibit overall depression, and demonstrate that facilitation has an unexpected and important function in producing frequency-invariant transmission.


Asunto(s)
Inhibición Neural , Plasticidad Neuronal , Sinapsis/metabolismo , Transmisión Sináptica , Sinaptotagminas/metabolismo , Animales , Percepción Auditiva , Calcio/metabolismo , Cerebelo/citología , Cerebelo/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Terminales Presinápticos/metabolismo , Células de Purkinje/metabolismo , Sinaptotagminas/deficiencia , Sinaptotagminas/genética , Vestíbulo del Laberinto/citología , Vestíbulo del Laberinto/metabolismo
9.
J Neurosci ; 41(35): 7329-7339, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290081

RESUMEN

Post-tetanic potentiation (PTP) is a form of short-term plasticity that lasts for tens of seconds following a burst of presynaptic activity. It has been proposed that PTP arises from protein kinase C (PKC) phosphorylation of Munc18-1, an SM (Sec1/Munc-18 like) family protein that is essential for release. To test this model, we made a knock-in mouse in which all Munc18-1 PKC phosphorylation sites were eliminated through serine-to-alanine point mutations (Munc18-1SA mice), and we studied mice of either sex. The expression of Munc18-1 was not altered in Munc18-1SA mice, and there were no obvious behavioral phenotypes. At the hippocampal CA3-to-CA1 synapse and the granule cell parallel fiber (PF)-to-Purkinje cell (PC) synapse, basal transmission was largely normal except for small decreases in paired-pulse facilitation that are consistent with a slight elevation in release probability. Phorbol esters that mimic the activation of PKC by diacylglycerol still increased synaptic transmission in Munc18-1SA mice. In Munc18-1SA mice, 70% of PTP remained at CA3-to-CA1 synapses, and the amplitude of PTP was not reduced at PF-to-PC synapses. These findings indicate that at both CA3-to-CA1 and PF-to-PC synapses, phorbol esters and PTP enhance synaptic transmission primarily by mechanisms that are independent of PKC phosphorylation of Munc18-1.SIGNIFICANCE STATEMENT A leading mechanism for a prevalent form of short-term plasticity, post-tetanic potentiation (PTP), involves protein kinase C (PKC) phosphorylation of Munc18-1. This study tests this mechanism by creating a knock-in mouse in which Munc18-1 is replaced by a mutated form of Munc18-1 that cannot be phosphorylated. The main finding is that most PTP at hippocampal CA3-to-CA1 synapses or at cerebellar granule cell-to-Purkinje cell synapses does not rely on PKC phosphorylation of Munc18-1. Thus, mechanisms independent of PKC phosphorylation of Munc18-1 are important mediators of PTP.


Asunto(s)
Proteínas Munc18/metabolismo , Plasticidad Neuronal/fisiología , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Femenino , Técnicas de Sustitución del Gen , Hipocampo/fisiología , Masculino , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Proteínas Munc18/deficiencia , Mutación Missense , Ésteres del Forbol/farmacología , Fosforilación , Mutación Puntual , Proteína Quinasa C/deficiencia , Células de Purkinje/fisiología , Proteínas Recombinantes/metabolismo , Transmisión Sináptica/efectos de los fármacos
10.
Nature ; 529(7584): 88-91, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26738595

RESUMEN

It has been known for more than 70 years that synaptic strength is dynamically regulated in a use-dependent manner. At synapses with a low initial release probability, closely spaced presynaptic action potentials can result in facilitation, a short-term form of enhancement in which each subsequent action potential evokes greater neurotransmitter release. Facilitation can enhance neurotransmitter release considerably and can profoundly influence information transfer across synapses, but the underlying mechanism remains a mystery. One proposed mechanism is that a specialized calcium sensor for facilitation transiently increases the probability of release, and this sensor is distinct from the fast sensors that mediate rapid neurotransmitter release. Yet such a sensor has never been identified, and its very existence has been disputed. Here we show that synaptotagmin 7 (Syt7) is a calcium sensor that is required for facilitation at several central synapses. In Syt7-knockout mice, facilitation is eliminated even though the initial probability of release and the presynaptic residual calcium signals are unaltered. Expression of wild-type Syt7 in presynaptic neurons restored facilitation, whereas expression of a mutated Syt7 with a calcium-insensitive C2A domain did not. By revealing the role of Syt7 in synaptic facilitation, these results resolve a longstanding debate about a widespread form of short-term plasticity, and will enable future studies that may lead to a deeper understanding of the functional importance of facilitation.


Asunto(s)
Calcio/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Sinaptotagminas/metabolismo , Animales , Señalización del Calcio , Femenino , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Sinaptotagminas/deficiencia , Sinaptotagminas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA