Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chemistry ; : e202401800, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922714

RESUMEN

The btuB riboswitch is a regulatory RNA sequence controlling gene expression of the outer membrane B12 transport protein BtuB by specifically binding coenzyme B12 (AdoCbl) as its natural ligand. The B12 sensing riboswitch class is known to accept various B12 derivatives, leading to a division into two riboswitch subclasses, dependent on the size of the apical ligand. Here we focus on the role of side chains b and e on affinity and proper recognition, i.e. correct structural switch of the btuB RNA, which belongs to the AdoCbl-binding class I. Chemical modification of these side chains disturbs crucial hydrogen bonds and/or electrostatic interactions with the RNA, its effect on both affinity and switching being monitored by in-line probing. Chemical modifications at sidechain b of vitamin B12 show larger effects indicating crucial B12-RNA interactions. When introducing the same modification to AdoCbl the influence of any side-chain modification tested is reduced. This renders the impact of the adenosyl-ligand for B12-btuB riboswitch recognition clearly beyond the known role in affinity.

2.
BMC Biol ; 20(1): 210, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171573

RESUMEN

BACKGROUND: Fluid shear stress enhances endothelial SMAD1/5 signaling via the BMP9-bound ALK1 receptor complex supported by the co-receptor Endoglin. While moderate SMAD1/5 activation is required to maintain endothelial quiescence, excessive SMAD1/5 signaling promotes endothelial dysfunction. Increased BMP signaling participates in endothelial-to-mesenchymal transition and inflammation culminating in vascular diseases such as atherosclerosis. While the function of Endoglin has so far been described under picomolar concentrations of BMP9 and short-term shear application, we investigated Endoglin under physiological BMP9 and long-term pathophysiological shear conditions. RESULTS: We report here that knock-down of Endoglin leads to exacerbated SMAD1/5 phosphorylation and atheroprone gene expression profile in HUVECs sheared for 24 h. Making use of the ligand-trap ALK1-Fc, we furthermore show that this increase is dependent on BMP9/10. Mechanistically, we reveal that long-term exposure of ECs to low laminar shear stress leads to enhanced Endoglin expression and endocytosis of Endoglin in Caveolin-1-positive early endosomes. In these endosomes, we could localize the ALK1-Endoglin complex, labeled BMP9 as well as SMAD1, highlighting Caveolin-1 vesicles as a SMAD signaling compartment in cells exposed to low atheroprone laminar shear stress. CONCLUSIONS: We identified Endoglin to be essential in preventing excessive activation of SMAD1/5 under physiological flow conditions and Caveolin-1-positive early endosomes as a new flow-regulated signaling compartment for BMP9-ALK1-Endoglin signaling axis in atheroprone flow conditions.


Asunto(s)
Caveolina 1 , Factor 2 de Diferenciación de Crecimiento , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Caveolina 1/metabolismo , Endoglina/genética , Endoglina/metabolismo , Endosomas/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Ligandos , Fosforilación
3.
J Inorg Biochem ; 242: 112153, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36774787

RESUMEN

Riboswitches are structural elements of mRNA involved in the regulation of gene expression by responding to specific cellular metabolites. To fulfil their regulatory function, riboswitches prefold into an active state, the so-called binding competent form, that guarantees metabolite binding and allows a consecutive refolding of the RNA. Here, we describe the folding pathway to the binding competent form as well as the ligand free structure of the moaA riboswitch of E. coli. This RNA proposedly responds to the molybdenum cofactor (Moco), a highly oxygen-sensitive metabolite, essential in the carbon and sulfur cycles of eukaryotes. K+- and Mg2+-dependent footprinting assays and spectroscopic investigations show a high degree of structure formation of this RNA already at very low ion-concentrations. Mg2+ facilitates additionally a general compaction of the riboswitch towards its proposed active structure. We show that this fold agrees with the earlier suggested secondary structure which included also a long-range tetraloop/tetraloop-receptor like interaction. Metal ion cleavage assays revealed specific Mg2+-binding pockets within the moaA riboswitch. These Mg2+ binding pockets are good indicators for the potential Moco binding site, since in riboswitches, Mg2+ was shown to be necessary to bind phosphate-carrying metabolites. The importance of the phosphate and of other functional groups of Moco is highlighted by binding assays with tetrahydrobiopterin, the reduced and oxygen-sensitive core moiety of Moco. We demonstrate that the general molecular shape of pterin by its own is insufficient for the recognition by the riboswitch.


Asunto(s)
Proteínas de Escherichia coli , Riboswitch , Escherichia coli/genética , Escherichia coli/metabolismo , ARN , Coenzimas/metabolismo , Conformación de Ácido Nucleico , Ligandos , Isomerasas/genética , Isomerasas/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
iScience ; 26(9): 107405, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680470

RESUMEN

Bone morphogenetic protein (BMP) signaling and fluid shear stress (FSS) mediate complementary functions in vascular homeostasis and disease development. It remains to be shown whether altered chromatin accessibility downstream of BMP and FSS offers a crosstalk level to explain changes in SMAD-dependent transcription. Here, we employed ATAC-seq to analyze arterial endothelial cells stimulated with BMP9 and/or FSS. We found that BMP9-sensitive regions harbor non-palindromic GC-rich SMAD-binding elements (GGCTCC) and 69.7% of these regions become BMP-insensitive in the presence of FSS. While GATA and KLF transcription factor (TF) motifs are unique to BMP9- and FSS-sensitive regions, respectively, SOX motifs are common to both. Finally, we show that both SOX(13/18) and GATA(2/3/6) family members are directly upregulated by SMAD1/5. These findings highlight the mechano-dependency of SMAD-signaling by a sequential mechanism of first elevated pioneer TF expression, allowing subsequent chromatin opening to eventually providing accessibility to novel SMAD binding sites.

5.
Adv Biol (Weinh) ; 5(2): e2000051, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36073990

RESUMEN

Bone is a remarkable dynamic structure, which integrates mechanical and biochemical signaling inputs. Interstitial fluid in the intramedullary space transmits signals derived from compression-induced fluid shear stress (FSS) to stimulate osteoblasts for bone formation. Using a flow system and human osteoblasts, this study demonstrates how BMP/TGF-ß  signaling integrates stimuli derived from FSS and YAP/TAZ and confirms these findings by transcriptome analyses. Here, FSS positively affects the phosphorylation of both SMAD1/5 and SMAD2/3, the respective BMP- and TGFß-R-SMADs. Increase in phosphorylated SMAD1/5 levels affects distinct target genes, which are susceptible to low levels of phosphorylated SMADs (such as ID1-3) or dependent on high levels of phosphorylated SMAD1/5 (NOG, noggin). Thus, FSS lowers the threshold for genes dependent on high levels of phosphorylated SMAD1/5 when less BMP is available. While the impact of FSS on direct BMP target genes is independent of YAP/TAZ, FSS acts cooperatively with YAP/TAZ on TGF-ß  target genes, which are shared by both pathways (such as CTGF). As mechanical stimuli are key in bone regeneration, their crosstalk to biochemical signaling pathways such as BMP and TGF-ß and YAP/TAZ acts on different levels, which allows now to think about new and more specified intervention strategies for age-related bone loss.

6.
ACS Chem Biol ; 16(5): 838-843, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33881303

RESUMEN

Nanoparticle-based delivery systems have shown great promise for theranostics and bioimaging on the laboratory scale due to favorable pharmacokinetics and biodistribution. In this study, we examine the utility of a cage-forming variant of the protein lumazine synthase, which was previously designed and evolved to encapsulate biomacromolecular cargo. Linking antibody-binding domains to the exterior of the cage enabled binding of targeting immunoglobulins and cell-specific uptake of encapsulated cargo. Protein nanocages displaying antibody-binding domains appear to be less immunogenic than their unmodified counterparts, but they also recruit serum antibodies that can mask the efficacy of the targeting antibody. Our study highlights the strengths and limitations of a common targeting strategy for practical nanoparticle-based delivery applications.


Asunto(s)
Materiales Biocompatibles/química , Complejos Multienzimáticos/química , Nanocápsulas/química , Anticuerpos/química , Anticuerpos/inmunología , Permeabilidad de la Membrana Celular , Composición de Medicamentos , Liberación de Fármacos , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/inmunología , Terapia Molecular Dirigida , Ingeniería de Proteínas , Propiedades de Superficie , Distribución Tisular
7.
Cell Rep ; 32(2): 107883, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668254

RESUMEN

The formation of cardiac valves depends on mechanical forces exerted by blood flow. Endocardial cells lining the interior of the heart are sensitive to these stimuli and respond by rearranging into luminal cells subjected to shear stress and abluminal cells not exposed to it. The mechanisms by which endocardial cells sense these dynamic biomechanical stimuli and how they evoke different cellular responses are largely unknown. Here, we show that blood flow activates two parallel mechanosensitive pathways, one mediated by Notch and the other by Klf2a. Both pathways negatively regulate the angiogenesis receptor Vegfr3/Flt4, which becomes restricted to abluminal endocardial cells. Its loss disrupts valve morphogenesis and results in the occurrence of Notch signaling within abluminal endocardial cells. Our work explains how antagonistic activities by Vegfr3/Flt4 on the abluminal side and by Notch on the luminal side shape cardiac valve leaflets by triggering unique differences in the fates of endocardial cells.


Asunto(s)
Válvulas Cardíacas/embriología , Mecanotransducción Celular , Organogénesis , Receptor Notch1/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel , Ratones Endogámicos C57BL , Transducción de Señal
8.
Genom Data ; 2: 335-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26484124

RESUMEN

The human dermal skin is permanently exposed to mechanical stress, for instance during facial expression, which might cause wrinkles with age. Cyclic mechanical stretching of cells results in cellular and cytoskeleton alignment perpendicular to the stretch direction regulating cellular response. With gene expression profiling it was aimed to identify the differentially expressed genes associated with the regulation of the cytoskeleton to investigate the stretch-induced cell alignment mechanism. Here, the transcription activity of the genome in response to cyclic mechanical stress was measured using DNA microarray technology with Agilent SurePrint G3 Human GE 8x60k Microarrays, based on the overall measurement of the mRNA. Gene expression was measured at the beginning of the alignment process showing first reoriented cells after 5 h stretching and at the end after 24 h, where nearly all cells are aligned. Gene expression data of control vs. stretched primary human dermal fibroblasts after 5 h and 24 h demonstrated the regulation of differentially expressed genes associated with metabolism, differentiation and morphology and were deposited at http://www.ncbi.nlm.nih.gov/geo with the accession number GSE58389.

9.
FEBS Lett ; 583(19): 3133-9, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19744486

RESUMEN

Mono-glucosylation of (H/K/N)Ras by Clostridium sordellii lethal toxin (TcsL) blocks critical survival signaling pathways, resulting in apoptotic cell death. One yet unsolved problem in studies on TcsL is the lack of a method allowing the specific detection of (H/K/N)Ras glucosylation. In this study, we identify the Ras(Mab 27H5) antibody as a glucosylation-sensitive antibody capable for the immunoblot detection of (H/K/N)Ras glucosylation in TcsL-treated cells. Alternative Ras antibodies including the K-Ras(Mab F234) antibody or the v-H-Ras(Mab Y13-159) antibody recognize Ras proteins regardless of glucosylation. (H/K)Ras are further shown to be more efficaciously glucosylated by TcsL than Rac1 in rat basophilic leukemia cells as well as in a cell-free system.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras/metabolismo , Animales , Anticuerpos , Apoptosis , Toxinas Bacterianas/farmacología , Catálisis , Línea Celular Tumoral , Glicosilación , Ratas , Proteína de Unión al GTP rac1/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA