Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 570(7762): 446, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31239567

Asunto(s)
Carbono , Bosques , Árboles
2.
Biotropica ; 52(5): 803-807, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33173235

RESUMEN

COVID-19 has impacted humanity and the global environment in myriad ways, and more changes are on the horizon. Here we consider the impact of COVID-19 on our collective ability to restore degraded habitats and facilitate forest recovery in the tropics.

3.
Ecol Appl ; 25(4): 1072-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26465043

RESUMEN

Past studies have shown that tropical forest regeneration on degraded farmlands is initially limited by lack of seed dispersal, but few studies have tracked changes in abundance and composition of seed rain past the first few years after land abandonment. We measured seed rain for 12 months in 10 6-9-year-old restoration sites and five mature, reference forests in southern Costa Rica in order to learn (1) if seed rain limitation persists past the first few years of regeneration; (2) how restoration treatments influence seed community structure and composition; and (3) whether seed rain limitation is contingent on landscape context. Each restoration site contained three 0.25-ha treatment plots: (1) a naturally regenerating control, (2) tree islands, and (3) a mixed-species tree plantation. Sites spanned a deforestation gradient with 9-89% forest area within 500 m around the treatment plots. Contrary to previous studies, we found that tree seeds were abundant and ubiquitous across all treatment plots (585.1 ± 142.0 seeds · m(-2) · yr(-1) [mean ± SE]), indicating that lack of seed rain ceased to limit forest regeneration within the first decade of recovery. Pioneer trees and shrubs comprised the vast majority of seeds, but compositional differences between restoration sites and reference forests were driven by rarer, large-seeded species. Large, animal-dispersed tree seeds were more abundant in tree islands (4.6 ± 2.9 seeds · m(-2) · yr(-1)) and plantations (5.8 ± 3.0 seeds · m(-2) · yr(-1)) than control plots (0.2 ± 0.1 seeds · m(-2) · yr(-1)), contributing to greater tree species richness in actively restored plots. Planted tree species accounted for < 1% of seeds. We found little evidence for landscape forest cover effects on seed rain, consistent with previous studies. We conclude that seed rain limitation shifted from an initial, complete lack of tree seeds to a specific limitation on large-seeded, mature forest species over the first decade. Although total seed abundance was equal among restoration treatments, tree plantations and tree islands continued to diversify seed rain communities compared to naturally regenerating controls. Compositional differences between regenerating plots and mature forests suggest that large-seeded tree species are appropriate candidates for enrichment planting.


Asunto(s)
Restauración y Remediación Ambiental/estadística & datos numéricos , Bosques , Plantas/clasificación , Semillas/fisiología , Clima Tropical , Costa Rica , Demografía , Ecosistema , Dinámica Poblacional , Especificidad de la Especie , Factores de Tiempo
4.
PLoS One ; 19(6): e0303638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38833460

RESUMEN

Arthraxon hispidus is an introduced, rapidly spreading, and newly invasive grass in the eastern United States, yet little is known about the foundational biology of this aggressive invader. Germination responses to environmental factors including salinity, pH, osmotic potential, temperature, and burial depth were investigated to better understand its germination niche. Seeds from six populations in the Mid-Atlantic US germinated 95% with an average mean time to germination of 3.42 days of imbibition in the dark at 23°C. Germination occurred across a temperature range of 8-37°C and a pH range of 5-10 (≥83%), suggesting that neither pH nor temperature will limit germination in many environments. Arthraxon hispidus germination occurred in high salinity (342 mM NaCl) and osmotic potentials as low as -0.83MPa. The NaCl concentration required to reduce germination by 50% exceeded salinity concentrations found in soil and some brackish water saltmarsh systems. While drought adversely affects A. hispidus, 50% germination occurred at osmotic potentials ranging from -0.25 to -0.67 MPa. Given the climatic conditions of North America, drought stress is unlikely to restrict germination in large regions. Finally, emergence greatly decreased with burial depth. Emergence was reduced to 45% at 1-2 cm burial depths, and 0% at 8 cm. Emergence depths in concert with adequate moisture, germination across a range of temperatures, and rapid germination suggests A. hispidus' seed bank may be short-lived in moist environments, but further investigation is warranted. Given the broad abiotic tolerances of A. hispidus and a widespread native range, A. hispidus has the potential to germinate in novel territories beyond its currently observed invaded range.


Asunto(s)
Germinación , Especies Introducidas , Temperatura , Germinación/fisiología , Poaceae/fisiología , Poaceae/crecimiento & desarrollo , Salinidad , Concentración de Iones de Hidrógeno , Semillas/crecimiento & desarrollo , Semillas/fisiología , Sequías
5.
Oecologia ; 173(2): 569-78, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23525802

RESUMEN

Restoring small-scale habitat heterogeneity in highly diverse systems, like tropical forests, is a conservation challenge and offers an excellent opportunity to test factors affecting community assembly. We investigated whether (1) the applied nucleation restoration strategy (planting tree islands) resulted in higher habitat heterogeneity than more homogeneous forest restoration approaches, (2) increased heterogeneity resulted in more diverse tree recruitment, and (3) the mean or coefficient of variation of habitat variables best explained tree recruitment. We measured soil nutrients, overstory and understory vegetation structure, and tree recruitment at six sites with three 5- to 7-year-old restoration treatments: control (no planting), planted tree islands, and conventional, mixed-species tree plantations. Canopy openness and soil base saturation were more variable in island treatments than in controls and plantations, whereas most soil nutrients had similar coefficients of variation across treatments, and bare ground was more variable in control plots. Seedling and sapling species density were equivalent in plantations and islands, and were substantially higher than in controls. Species spatial turnover, diversity, and richness were similar in island and plantation treatments. Mean canopy openness, rather than heterogeneity, explained the largest proportion of variance in species density. Our results show that, whereas canopy openness and soil base saturation are more heterogeneous with the applied nucleation restoration strategy, this pattern does not translate into greater tree diversity. The lack of a heterogeneity-diversity relationship is likely due to the fact that recruits respond more strongly to mean resource gradients than variability at this early stage in succession, and that seed dispersal limitation likely reduces the available species pool. Results show that planting tree islands facilitates tree recruitment to a similar degree as intensive plantation-style restoration strategies.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Suelo/química , Árboles/fisiología , Costa Rica , Clima Tropical
6.
Sci Rep ; 12(1): 13452, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927554

RESUMEN

Reversing large-scale habitat degradation and deforestation goes beyond what can be achieved by site-level ecological restoration and a landscape ecology perspective is fundamental. Here we assess the relative importance of tree cover and its configuration on forest-dependent birds and late-successional tree seedlings in restoration sites in southern Costa Rica. The abundance and species richness of birds increased in landscapes with more corridors, higher tree cover, and lower levels of fragmentation, highlighting the importance of riparian corridors for connectivity, and continuous tree cover as suitable habitat. Landscape variables affected abundance and species richness of seedlings similarly, but effects were weaker, possibly because seedlings face establishment limitation in addition to dispersal limitation. Moreover, the scale of landscape effects on seedlings was small, likely because proximal individual trees can significantly influence recruitment in restoration plots. Results underscore the importance of incorporating landscape-level metrics to restoration projects, as knowing the extent, and how the landscape may affect restoration outcomes can help to infer what kind of species will arrive to restoration plots.


Asunto(s)
Bosques , Clima Tropical , Animales , Aves , Conservación de los Recursos Naturales , Ecosistema , Plantones , Árboles
7.
Plant Divers ; 41(2): 118-123, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31193151

RESUMEN

The critically endangered tree Schizolaena tampoketsana is confined to a few diminished and degraded forest fragments on the Malagasy highlands. This habitat is vulnerable to loss due to frequent fires in the surrounding grassland that threaten to spread into the forest. One of these fragments is the focus a conservation project and here the managers aim to conserve S. tampoketsana by restoring its forest habitat to its former extent as evidenced by remnant woody plants. To inform this activity the survival and early-stage growth of seedlings of four locally native tree species were compared under contrasting conditions of proximity to the remaining forest and shade. After 12 months, seedlings of three species (Baronia taratana, Eugenia pluricymosa, Uapaca densifolia) survived better and experienced improved growth in height in grassland close to the existing forest rather than distant from it, and two survived better with shade rather than unshaded. A number of mechanisms could explain these results including reduced exposure to desiccating sunlight and winds and better soil and greater water availability close to the forest. The seedlings of one species (Nuxia capitata) survived well under all conditions. This study suggests that reforestation in these dry highlands is most feasible adjacent to remnant forest fragments and in microhabitats that minimize water loss, though young plants of some tree species may be capable of surviving in harsher conditions.

8.
Sci Adv ; 5(7): eaav3223, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31281881

RESUMEN

Over 140 Mha of restoration commitments have been pledged across the global tropics, yet guidance is needed to identify those landscapes where implementation is likely to provide the greatest potential benefits and cost-effective outcomes. By overlaying seven recent, peer-reviewed spatial datasets as proxies for socioenvironmental benefits and feasibility of restoration, we identified restoration opportunities (areas with higher potential return of benefits and feasibility) in lowland tropical rainforest landscapes. We found restoration opportunities throughout the tropics. Areas scoring in the top 10% (i.e., restoration hotspots) are located largely within conservation hotspots (88%) and in countries committed to the Bonn Challenge (73%), a global effort to restore 350 Mha by 2030. However, restoration hotspots represented only a small portion (19.1%) of the Key Biodiversity Area network. Concentrating restoration investments in landscapes with high benefits and feasibility would maximize the potential to mitigate anthropogenic impacts and improve human well-being.


Asunto(s)
Conservación de los Recursos Naturales , Bosque Lluvioso , África , Biodiversidad , Clima Tropical
9.
Sci Adv ; 4(5): eaas9143, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29774239

RESUMEN

Several recent meta-analyses have aimed to determine whether natural regeneration is more effective at recovering tropical forests than active restoration (for example, tree planting). We reviewed this literature and found that comparisons between strategies are biased by positive site selection. Studies of natural forest regeneration are generally conducted at sites where a secondary forest was already present, whereas tree planting studies are done in a broad range of site conditions, including non-forested sites that may not have regenerated in the absence of planting. Thus, a level of success in forest regeneration is guaranteed for many studies representing natural regeneration, but not for those representing active restoration. The complexity of optimizing forest restoration is best addressed by paired experimentation at the same site, replicated across landscapes. Studies that have taken this approach reach different conclusions than those arising from meta-analyses; the results of paired experimental comparisons emphasize that natural regeneration is a highly variable process and that active restoration and natural regeneration are complementary strategies.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Bosques , Sesgo de Selección , Humanos , Clima Tropical
10.
PLoS One ; 9(3): e90573, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24595233

RESUMEN

Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches), and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales/métodos , Árboles/fisiología , Animales , Biodiversidad , Costa Rica , Ecosistema , Herbivoria , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA