Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vis Exp ; (101): e52900, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26274555

RESUMEN

Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.


Asunto(s)
Nanoestructuras/química , Nanotecnología/métodos , Microscopía de Túnel de Rastreo/métodos , Impresión
2.
ACS Nano ; 7(6): 5499-505, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23721101

RESUMEN

Low resistivity, near-surface doping in silicon represents a formidable challenge for both the microelectronics industry and future quantum electronic devices. Here we employ an ultra-high vacuum strategy to create highly abrupt doping profiles in silicon, which we characterize in situ using a four point probe scanning tunnelling microscope. Using a small molecule gaseous dopant source (PH3) which densely packs on a reconstructed silicon surface, followed by encapsulation in epitaxial silicon, we form highly conductive dopant sheets with subnanometer control of the depth profiles. This approach allows us to test the limits of ultra-shallow junction formation, with room temperature resistivities of 780 Ω/□ at an encapsulation depth of 4.3 nm, increasing to 23 kΩ/□ at an encapsulation depth of only 0.5 nm. We show that this depth-dependent resistivity can be accounted for by a combination of dopant segregation and surface scattering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA