RESUMEN
The ocular lens is the primary organ within the eye responsible for accommodation. During accommodation, the lens is subject to biomechanical forces. We previously demonstrated that stretching the porcine lens can increase lens epithelial cell proliferation. Although murine lenses are commonly employed in lens research, murine lens stretching has remained unexplored. Murine lens stretching thus represents a novel source of potential discovery in lens research. In the present study, we describe a method for stretching the murine lens by compressing the murine globe embedded in a hydrogel. We hypothesized that, as the eye is compressed along the optic axis, the lens would stretch through zonular tension due to the equatorial region of the eye bulging outward. Our results showed that this led to a compression-dependent increase in murine lens epithelial cell proliferation, suggesting that compression of the embedded murine globe is a viable technique for studying the mechanobiology of the lens epithelium.
Asunto(s)
Hidrogeles , Cristalino , Animales , Porcinos , Ratones , Acomodación Ocular , Proliferación CelularRESUMEN
This study was conducted to evaluate the impact of varying scleral material properties on the biomechanical response of the cornea under air-puff induced deformation. Twenty pairs of human donor eyes were obtained for this study. One eye from each pair had its sclera stiffened using 4% glutaraldehyde, while the fellow eye served as control for uniaxial strip testing. The whole globes were mounted in a rigid holder and intraocular pressure (IOP) was set using a saline column. Dynamic corneal response parameters were measured before and after scleral stiffening using the CorVis ST, a dynamic Scheimpflug analyzer. IOP was set to 10, 20, 30, and 40 mmHg, with at least 3 examinations performed at each pressure step. Uniaxial tensile testing data were fit to a neo-Hookean model to estimate the Young's modulus of treated and untreated sclera. Scleral Young's modulus was found to be significantly correlated with several response parameters, including Highest Concavity Deformation Amplitude, Peak Distance, Highest Concavity Radius, and Stiffness Parameter-Highest Concavity (SP-HC). There were significant increases in SP-HC after scleral stiffening at multiple levels of IOP, while no significant difference was observed in the corneal Stiffness Parameter - Applanation 1 (SP-A1) at any level of IOP. Scleral mechanical properties significantly influenced the corneal deformation response to an air-puff. The stiffer the sclera, the greater the constraining effect on corneal deformation resulting in lower displaced amplitude. This may have important clinical implications and suggests that both corneal and scleral material properties contribute to the observed corneal response in air-puff induced deformation.
Asunto(s)
Córnea/fisiología , Elasticidad/fisiología , Esclerótica/fisiología , Estrés Mecánico , Anciano , Aire , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Presión Intraocular/fisiología , Masculino , Persona de Mediana Edad , Resistencia a la Tracción , Donantes de Tejidos , Tonometría OcularRESUMEN
Purpose: Our study aimed to determine whether the altered expression of biomarkers linked to corneal injuries, such as the edema-regulating proteins aquaporin-1 and aquaporin-5 (AQP1 and AQP5), occurred following primary blast exposure. Methods: Adult male Dutch Belted rabbits were anesthetized and exposed to blast waves with peak overpressures of 142.5-164.1 kPa (20.4-23.4 psi). These exposure groups experienced peak blast overpressure-specific impulses (impulse per unit surface area) of 199.6-228.5 kPa-ms. Unexposed rabbits were included as controls. The animals were euthanized at 48 h post-exposure. Corneas obtained from the euthanized blast-exposed and control rabbits were processed for quantitative PCR and western blot to quantify mRNA and the protein expression of AQP1 and AQP5. Immunohistochemical analysis was conducted to determine the cellular localization of AQP1 and AQP5. Results: Corneal thickness increased up to 18% with the peak blast overpressure-specific impulses of 199.6-228.5 kPa-ms at 48 h after blast exposure. mRNA levels of AQP1 and AQP5 increased in the whole cornea lysates of blast-exposed rabbits relative to those of the controls. Western blot analyses of whole cornea lysates revealed that the expression levels of AQP1 and AQP5 were approximately 2- and 1.5-fold higher, respectively, in blast-exposed rabbits compared to controls. The extent of AQP1 immunostaining (AQP1-IS) increased in the epithelial cell layer after blast exposure. The AQP5-IS pattern changed from a mixed membrane and cytoplasmic expression in the controls to predominantly cytoplasmic expression in the basally located cornea epithelial cells of blast-exposed rabbits. Conclusions: Primary blast exposure resulted in edema-related changes in the cornea manifested by the altered expression of the edema-regulating proteins AQP1 and AQP5 with blast overpressure-specific impulses. These findings support potential acute corneal injury mechanisms in which the altered regulation of water permeability is caused by primary blast exposure.
Asunto(s)
Acuaporina 1/genética , Acuaporina 5/genética , Traumatismos por Explosión/genética , Córnea/metabolismo , Lesiones de la Cornea/genética , Regulación de la Expresión Génica , Animales , Acuaporina 1/metabolismo , Acuaporina 5/metabolismo , Traumatismos por Explosión/patología , Córnea/patología , Lesiones de la Cornea/patología , Paquimetría Corneal , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Lámpara de HendiduraRESUMEN
The biomechanical properties of the ocular lens are essential to its function as a variable power optical element. These properties change dramatically with age in the human lens, resulting in a loss of near vision called presbyopia. However, the mechanisms of these changes remain unknown. Lens compression offers a relatively simple method for assessing the lens' biomechanical stiffness in a qualitative sense and, when coupled with appropriate analytical techniques, can help quantify biomechanical properties. A variety of lens compression tests have been performed to date, including both manual and automated, but these methods inconsistently apply key aspects of biomechanical testing such as preconditioning, loading rates, and time between measurements. This paper describes a fully automated lens compression test wherein a motorized stage is synchronized with a camera to capture the force, displacement, and shape of the lens throughout a preprogrammed loading protocol. A characteristic elastic modulus may then be calculated from these data. While demonstrated here using porcine lenses, the approach is appropriate for the compression of lenses of any species.
Asunto(s)
Cristalino , Cristalino/fisiología , Animales , Porcinos , Fenómenos Biomecánicos/fisiologíaRESUMEN
Traumatic optic neuropathy (TON) is a common cause of irreversible blindness following head injury. TON is characterized by axon damage in the optic nerve followed by retinal ganglion cell death in the days and weeks following injury. At present, no therapeutic or surgical approach has been found to offer any benefit beyond observation alone. This is due in part to the lack of translational animal models suitable for understanding mechanisms and evaluating candidate treatments. In this study, we developed a rat model of TON in which the eye is rapidly rotated, inflicting mechanical stress on the optic nerve and leading to significant visual deficits. These functional deficits were thoroughly characterized up to one week after injury using electrophysiology and immunohistochemistry. The photopic negative response (PhNR) of the light adapted full field electroretinogram (LA ffERG) was significantly altered following injury. This correlated with increased biomarkers of retinal stress, axon disruption, and ganglion cell death. Together, this evidence suggests the utility of our model for mimicking clinically relevant TON and that the PhNR may be an early diagnostic for TON. We also found indirect evidence that ketamine, which was used for anesthesia, may ameliorate TON. Future studies will utilize this animal model for evaluation of candidate treatments.
RESUMEN
Purpose: Presbyopia-the progressive loss of near focus with age-is primarily a result of changes in lens biomechanics. In particular, the shape of the ocular lens in the absence of zonular tension changes significantly throughout adulthood. Contributors to this change in shape are changes in lens biomechanical properties, continuous volumetric growth lens, and possibly remodeling of the lens capsule. Knowledge in this area is growing rapidly, so the purpose of this mini-review was to summarize and synthesize these gains.Methods: We review the recent literature in this field.Results: The mechanisms governing age-related changes in biomechanical properties remains unknown. We have recently shown that lens growth may be driven by zonular tension. The same mechanobiological mechanism driving lens growth may also lead to remodeling of the capsule, though this remains to be demonstrated.Conclusions: This mini-review focuses on identifying mechanisms which cause these age-related changes, suggesting future work which may elucidate these mechanisms, and briefly discusses ongoing efforts to develop a non-surgical approach for therapeutic management of presbyopia. We also propose a simple model linking lens growth and biomechanical properties.
Asunto(s)
Cápsula del Cristalino , Cristalino , Presbiopía , Humanos , Adulto , Presbiopía/terapia , Acomodación Ocular , EnvejecimientoRESUMEN
The brain and the retina share many physiological similarities, which allows the retina to serve as a model of CNS disease and disorder. In instances of trauma, the eye can even indicate damage to the brain via abnormalities observed such as irregularities in pupillary reflexes in suspected traumatic brain injury (TBI) patients. Elevation of reactive oxygen species (ROS) has been observed in neurodegenerative disorders and in both traumatic optic neuropathy (TON) and in TBI. In a healthy system, ROS play a pivotal role in cellular communication, but in neurodegenerative diseases and post-trauma instances, ROS elevation can exacerbate neurodegeneration in both the brain and the retina. Increased ROS can overwhelm the inherent antioxidant systems which are regulated via mitochondrial processes. The overabundance of ROS can lead to protein, DNA, and other forms of cellular damage which ultimately result in apoptosis. Even though elevated ROS have been observed to be a major cause in the neurodegeneration observed after TON and TBI, many antioxidants therapeutic strategies fail. In order to understand why these therapeutic approaches fail further research into the direct injury cascades must be conducted. Additional therapeutic approaches such as therapeutics capable of anti-inflammatory properties and suppression of other neurodegenerative processes may be needed for the treatment of TON, TBI, and neurodegenerative diseases.
RESUMEN
Spaceflight-Associated Neuro-ocular Syndrome (SANS) is a descriptor of several ocular and visual signs and symptoms which commonly afflicts those exposed to microgravity. We propose a new theory for the driving force leading to the development of Spaceflight-Associated Neuro-ocular Syndrome which is described via a finite element model of the eye and orbit. Our simulations suggest that the anteriorly directed force produced by orbital fat swelling is a unifying explanatory mechanism for Spaceflight-Associated Neuro-ocular Syndrome, as well as producing a larger effect than that generated by elevation in intracranial pressure. Hallmarks of this new theory include broad flattening of the posterior globe, loss of tension in the peripapillary choroid, decreased axial length, consistent with findings in astronauts. A geometric sensitivity study suggests several anatomical dimensions may be protective against Spaceflight-Associated Neuro-ocular Syndrome.
RESUMEN
PURPOSE: The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics of interest over the last two decades. In particular, the behavior of the vitreous humor as a viscoelastic tissue has been investigated to identify its role in a variety of processes related to biotransport, aging, and age-related pathologies of the vitreoretinal interface. METHODS: A thorough search and review of peer-reviewed publications discussing the biomechanical properties of the vitreous humor in both human and animal specimens was conducted. Findings on the effects of biomechanics on vitreoretinal pathologies and vitreous biotransport were analyzed and discussed. RESULTS: The pig and rabbit vitreous have been found to be most mechanically similar to the human vitreous. Age-related liquefaction of the vitreous creates two mechanically unique phases, with an overall effect of softening the vitreous. However, the techniques used to acquire this mechanical data are limited by the in vitro testing methods used, and the vitreous humor has been hypothesized to behave differently in vivo due in part to its swelling properties. The impact of liquefaction and subsequent detachment of the vitreous humor from the posterior retinal surface is implicated in a variety of tractional pathologies of the retina and macula. Liquefaction also causes significant changes in the biotransport properties of the eye, allowing for significantly faster movement of molecules compared to the healthy vitreous. Recent developments in computational and ex vivo models of the vitreous humor have helped with understanding its behavior and developing materials capable of replacing it. CONCLUSIONS: A better understanding of the biomechanical properties of the vitreous humor and how these relate to its structure will potentially aid in improving clinical metrics for vitreous liquefaction, design of biomimetic vitreous substitutes, and predicting pharmacokinetics for intravitreal drug delivery.
Asunto(s)
Oftalmopatías , Cuerpo Vítreo , Humanos , Animales , Conejos , Porcinos , Fenómenos Biomecánicos , Retina , EnvejecimientoRESUMEN
Purpose: To determine the dynamic modification of the load exerted on the eye during air-puff testing by accounting for the deformation of the cornea. Methods: The effect of corneal load alteration with surface shape (CLASS) was characterized as an additional component of the load produced during the concave phase where the fluid outflow tangential to the corneal surface creates backward pressure. Concave phase duration (t CD ), maximum CLASS value (CLASS max ), and the area under CLASS-time curve (CLASS int ) are calculated for 26 keratoconic (KCN), 102 normal (NRL), and 29 ocular hypertensive (OHT) subjects. Tukey's HSD tests were performed to compare the three subject groups. A p-value less than 0.05 was considered statistically significant. Results: Accounting for CLASS increased the load by 34.6% ± 7.7% at maximum concavity; these differences were greater in KCN subjects (p < 0.0001) and lower in OHT subjects (p = 0.0028) than in NRL subjects. t CD and CLASS int were significantly longer and larger, respectively, for KCN subjects than those in the NRL and OHT groups (p < 0.0001). Conclusion: Load characterization is an essential step in assessing the cornea's biomechanical response to air-puff-induced deformation. The dynamic changes in the corneal surface shape significantly alter the load experienced by the corneal apex. This implies a subject-specific loading dynamic even if the air puff itself is identical. This is important when comparing the same eye after a surgical procedure or topical medication that alters corneal properties. Stiffer corneas are least sensitive to a change in load, while more compliant corneas show higher sensitivity.
RESUMEN
Précis: Using a controlled experimental design with corneal phantoms, this study provides evidence of the lack of validity of a static air quality indicator, previously used to characterize aerosolization during dynamic noncontact tonometry. Purpose: To evaluate the accuracy of aerosol concentrations reported by an air quality indicator (AQI) following an air puff from a noncontact tonometer using non-aerosolizing corneal phantoms. Methods: Three rubber corneal phantoms of different stiffnesses were used to represent varying intraocular pressure (IOP) values. No liquid components and therefore no aerosol-generating potential was present. Reported concentrations of particulate matter (PM) having diameter less than 2.5 and 10µm, respectively PM2.5 and PM10, were recorded using an AQI before and during an air puff generated using noncontact tonometry. The effects of covariates IOP and sensor location on changes to air quality measurements from the baseline were evaluated using analysis of variance. Monte Carlo simulations were used to determine the likelihood of observing published trends by chance. The statistical significance threshold was p<0.05. Results: No correlations were found between PM2.5 and IOP or location. Reported concentrations of PM10 depended significantly on both IOP (p=0.0241) and location (p=0.0167). Monte Carlo simulations suggest the likelihood of finding a spurious positive correlation between IOP and PM at the upper same location are 53% and 92% for PM2.5 and PM10, respectively, indicating the AQI has systematic bias resulting from non-aerosol sources. Conclusions: We were able to reproduce the published correlation between reported aerosol concentration and IOP in non-contact tonometry using dry rubber phantoms in place of living corneas with tear films. In this study, we demonstrated that published correlations linking NCT to tear film aerosolization were artifacts of the measurement technique.
RESUMEN
PURPOSE: The purpose of this study was to investigate the mechanism of potential droplet formation in response to air puff deformation with two noncontact tonometers (NCTs). METHODS: Twenty healthy volunteers were examined using two NCTs, Ocular Response Analyzer and Corvis ST, and two contact tonometers, iCare and Tono-Pen. High-speed videos of the tear film response were captured with at spatial resolution of 20 microns/pixel at 2400 fps. Droplet size, droplet velocity, distance between air puff impact location, and the tear meniscus-lid margin were characterized. RESULTS: One subject was excluded due to technical issues. Droplets were detected only in tests with instilled eye drop. Videos showed the tear film rolls away from the apex while remaining adherent to the ocular surface due to the tendency of the fluid to remain attached to a solid surface explained by the Coanda effect. Twelve out of 38 videos with an eye drop administration showed droplet formation. Only one resulted in droplets with predominantly forward motion, which had the shortest distance between air puff impact location and lower meniscus. This distance on average was 5.9 ± 1.1 mm. The average droplet size was 500 ± 200 µm. CONCLUSIONS: Results indicate no droplet formation under typical clinical setting. Hence, standard clinical use of NCT tests is not expected to cause droplets. NCT testing with eye drop administration showed droplet formation at the inferior eyelid boundary, which acts as a barrier and interrupts tear flow. TRANSLATIONAL RELEVANCE: Study of tear film interaction with NCT air puff shows that these tonometers are not expected to cause droplet formation in standard use and that if external drops are required, both eyelids should be held if patients need assistance to maintain open eyes to avoid droplets with predominantly forward motion.
Asunto(s)
Hidrodinámica , Laceraciones , Humanos , Presión Intraocular , Manometría , Soluciones Oftálmicas , Tonometría OcularRESUMEN
The etiology of age-related cortical cataracts is not well understood but is speculated to be related to alterations in cell adhesion and/or the changing mechanical stresses occurring in the lens with time. The role of cell adhesion in maintaining lens transparency with age is difficult to assess because of the developmental and physiological roles that well-characterized adhesion proteins have in the lens. This report demonstrates that Arvcf, a member of the p120-catenin subfamily of catenins that bind to the juxtamembrane domain of cadherins, is an essential fiber cell protein that preserves lens transparency with age in mice. No major developmental defects are observed in the absence of Arvcf, however, cortical cataracts emerge in all animals examined older than 6-months of age. While opacities are not obvious in young animals, histological anomalies are observed in lenses at 4-weeks that include fiber cell separations, regions of hexagonal lattice disorganization, and absence of immunolabeled membranes. Compression analysis of whole lenses also revealed that Arvcf is required for their normal biomechanical properties. Immunofluorescent labeling of control and Arvcf-deficient lens fiber cells revealed a reduction in membrane localization of N-cadherin, ß-catenin, and αN-catenin. Furthermore, super-resolution imaging demonstrated that the reduction in protein membrane localization is correlated with smaller cadherin nanoclusters. Additional characterization of lens fiber cell morphology with electron microscopy and high resolution fluorescent imaging also showed that the cellular protrusions of fiber cells are abnormally elongated with a reduction and disorganization of cadherin complex protein localization. Together, these data demonstrate that Arvcf is required to maintain transparency with age by mediating the stability of the N-cadherin protein complex in adherens junctions.
RESUMEN
Many disease pathologies, particularly in the eye, are induced by oxidative stress. In particular, injury to the optic nerve (ON), or optic neuropathy, is one of the most common causes of vision loss. Traumatic optic neuropathy (TON) occurs when the ON is damaged following blunt or penetrating trauma to either the head or eye. Currently, there is no effective treatment for TON, only management options, namely the systematic delivery of corticosteroids and surgical decompression of the optic nerve. Unfortunately, neither option alleviates the generation of reactive oxygen species (ROS) which are responsible for downstream damage to the ON. Additionally, the systemic delivery of corticosteroids can cause fatal off-target effects in cases with brain involvement. In this study, we developed a tunable injectable hydrogel delivery system for local methylene blue (MB) delivery using an internal method of crosslinking. MB was chosen due to its ROS scavenging ability and neuroprotective properties. Our MB-loaded polymeric scaffold demonstrated prolonged release of MB as well as in situ gel formation. Additionally, following rheological characterization, these alginate hydrogels demonstrated minimal cytotoxicity to human retinal pigment epithelial cells in vitro and exhibited injection feasibility through small-gauge needles. Our chosen MB concentrations displayed a high degree of ROS scavenging following release from the alginate hydrogels, suggesting this approach may be successful in reducing ROS levels following ON injury, or could be applied to other ocular injuries.
Asunto(s)
Alginatos , Traumatismos del Nervio Óptico , Alginatos/uso terapéutico , Humanos , Hidrogeles/uso terapéutico , Nervio Óptico , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/cirugía , Especies Reactivas de OxígenoRESUMEN
The disrupted morphology of lenses in mouse models for cataracts precludes accurate in vitro assessment of lens growth by weight. To overcome this limitation, we developed morphometric methods to assess defects in eye lens growth and shape in mice expressing the alphaA-crystallin R49C (alphaA-R49C) mutation. Our morphometric methods determine quantitative shape and dry weight of the whole lens from histological sections of the lens. This method was then used to quantitatively compare the biometric growth patterns of lenses of different genotypes of mice from birth to 12 months. The wild type dry lens weights determined using the morphometric method were comparable to previously reported weights. Next we applied the method to assessing the lenses of alphaA-R49C knock-in mice, which exhibit decreased alphaA-crystallin protein solubility, resulting in a variety of growth abnormalities including early cataract formation, decreased eye and lens size, failure to form the equatorial bow region, and continued lens cell death, sometimes resulting in the entire loss of the lens and eye. Our morphometric methods reproducibly quantified these defects by combining histology, microscopy, and image analysis. The volume measurement accurately represented the total growth of the lens, whereas the geometric shape of the lens more accurately quantified the differences between the growth of the mutant and wild-type lenses. These methods are robust tools for measuring dry lens weight and quantitatively comparing the growth of small lenses that are difficult to weigh accurately such as those from very young mice and mice with developmental lens defects.
Asunto(s)
Biometría/métodos , Cristalino/anomalías , Cristalino/patología , Fenotipo , Envejecimiento , Animales , Arginina , Catarata/genética , Cisteína , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Genotipo , Heterocigoto , Homocigoto , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Tamaño de los Órganos , Solubilidad , Cadena A de alfa-Cristalina/química , Cadena A de alfa-Cristalina/genéticaRESUMEN
The R49C mutation of alphaA-crystallin (alphaA-R49C) causes hereditary cataracts in humans; patients in a four-generation Caucasian family were found be heterozygous for this autosomal dominant mutation. We previously generated knock-in mouse models of this mutation and found that by 2 months of age, heterozygous mutant mice exhibited minor lens defects including reduced protein solubility, altered signaling in epithelial and fiber cells, and aberrant interactions between alphaA-crystallin and other lens proteins. In contrast, homozygous mutant alphaA-R49C knock-in mice displayed earlier and more extensive lens defects including small eyes and small lenses at birth, death of epithelial and fiber cells, and the formation of posterior, nuclear, and cortical cataracts in the first month of life. We have extended this study to now show that in alphaA-R49C homozygous mutant mice, epithelial cells failed to form normal equatorial bow regions and fiber cells continued to die as the mice aged, resulting in a complete loss of lenses and overall eye structure in mice older than 4 months. These results demonstrate that expression of the hereditary R49C mutant of alphaA-crystallin in vivo is sufficient to adversely affect lens growth, lens cell morphology, and eye function. The death of fiber cells caused by this mutation may ultimately lead to loss of retinal integrity and blindness.
Asunto(s)
Catarata/genética , Modelos Animales de Enfermedad , Corteza del Cristalino/patología , Núcleo del Cristalino/patología , Mutación Missense , Cadena A de alfa-Cristalina/genética , Animales , Animales Recién Nacidos , Catarata/metabolismo , Catarata/patología , Proliferación Celular , Técnicas de Sustitución del Gen , Antígeno Ki-67 , Corteza del Cristalino/metabolismo , Núcleo del Cristalino/metabolismo , RatonesRESUMEN
This study investigates whether the presence of accommodative tissues biomechanically influences the shape of the cornea and potentially drives corneal morphogenesis during embryonic ocular development. Porcine eyes were subjected to an internal pressure simulating intraocular pressure. Ocular geometry was evaluated using a corneal topographer and digital cameras before and after dissection of the accommodative tissues. A computational model of the porcine eye was constructed and loaded by an internal pressure representing intraocular pressure. Eye shape was evaluated in models with and without the ciliary body. The porcine model was generalized to the human model, simplified model, or embryonic model with different ocular tissue shapes, sizes, and stiffnesses. Experimental data showed that, even in the six-month-old pig eye, the average corneal radius of curvature increased after the removal of accommodative tissues compared to sham controls (p = 0.002). Computational results agreed with the experimental data and further suggested that the change in corneal radius is greater when the tissue stiffness is low and the intraocular pressure is high, regardless of the geometry and size of the eye components. Using a combined in vitro and in silico approach, this study explores the biomechanical influence of the accommodative tissues and related loads on the cornea and offers additional factors that might influence the shape of the cornea.
Asunto(s)
Acomodación Ocular , Córnea/citología , Córnea/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Córnea/fisiología , Humanos , Presión Intraocular , Morfogénesis , PorcinosRESUMEN
The mechanism by which the eye dynamically changes focal distance (accommodation), and the mechanism by which this ability is lost with age (presbyopia), are still contested. Due to inherent confounding factors in vivo, in vitro measurements have been undertaken using a robotic lens stretcher to examine these mechanisms as well as the efficacy of lens refilling - a proposed treatment for presbyopia. Dynamic forces, anterior and posterior curvatures, and lens thickness are all correlated for young natural and refilled porcine lenses. Comparisons are made to lenses refilled with a homogeneous polymer system. The amplitude of accommodation of the young porcine lens is very small such that it may be a suitable model for presbyopia. The behavior of refilled lenses was highly dependent on the refill volume. The volume could be tuned to maximize accommodative amplitude in the refilled lens.
Asunto(s)
Cristalino/fisiología , Presbiopía/fisiopatología , Acomodación Ocular , Animales , Elasticidad , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/métodos , Cristalino/fisiopatología , Cristalino/cirugía , Presbiopía/cirugía , Refracción Ocular , Robótica/instrumentación , Sus scrofaRESUMEN
Purpose: The continuous growth of the lens throughout life may contribute to the onset of age-related conditions in the lens (i.e., presbyopia and cataract). Volumetric growth is the result of continuous proliferation of lens epithelial cells (LECs). The driving factors controlling LEC proliferation are not well understood. This study tested the hypothesis that mechanical stretching modulates LEC proliferation. Methods: Biomechanical regulation of LEC proliferation was investigated by culturing whole porcine lenses and connective tissues ex vivo under varying physiologically relevant stretching conditions using a bespoke lens stretching device. Additionally, some lenses were treated with a YAP function inhibitor to determine the Hippo signaling pathway's role in regulating lens growth. Resulting changes in LEC labeling index were analyzed using EdU incorporation and flow cytometry for each lens. Results: LEC proliferation was found to be modulated by mechanical strain. Increasing both the magnitude of static stretching and the stretching frequency in cyclic stretching resulted in a proportional increase in the labeling indices of the LECs. Additionally, treatment with the YAP function inhibitor effectively eliminated this relationship. Conclusions: These data demonstrate that LEC proliferation is regulated in part, by the mechanotransduction of stresses induced in the lens capsule and that YAP plays an important role in mechanosensing. These results have important implications for understanding lens growth and morphogenesis. The model may also be used to identify and evaluate targets for modulating lens growth.