Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(50): 22941-22949, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472892

RESUMEN

Crystallographic defects are essential to the functional properties of semiconductors, controlling everything from conductivity to optical properties and catalytic activity. In nanocrystals, too, defect engineering with extrinsic dopants has been fruitful. Although intrinsic defects like vacancies can be equally useful, synthetic strategies for controlling their generation are comparatively underdeveloped. Here, we show that intrinsic defect concentration can be tuned during the synthesis of colloidal metal oxide nanocrystals by the addition of metal salts. Although not incorporated in the nanocrystals, the metal salts dissociate at high temperatures, promoting the dissociation of carboxylate ligands from metal precursors, leading to the introduction of oxygen vacancies. For example, the concentration of oxygen vacancies can be controlled up to 9% in indium oxide nanocrystals. This method is broadly applicable as we demonstrate by generating intrinsic defects in metal oxide nanocrystals of various morphologies and compositions.


Asunto(s)
Nanopartículas del Metal , Sales (Química) , Óxidos , Metales , Oxígeno
2.
J Am Chem Soc ; 143(22): 8278-8294, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-33999619

RESUMEN

Nanocrystalline anatase TiO2 is a robust model anode for Li insertion in batteries. The influence of nanocrystal size on the equilibrium potential and kinetics of Li insertion is investigated with in operando spectroelectrochemistry of thin film electrodes. Distinct visible and infrared responses correlate with Li insertion and electron accumulation, respectively, and these optical signals are used to deconvolute bulk Li insertion from other electrochemical responses, such as double-layer capacitance, pseudocapacitance, and electrolyte leakage. Electrochemical titration and phase-field simulations reveal that a difference in surface energies between anatase and lithiated phases of TiO2 systematically tunes the Li-insertion potentials with the particle size. However, the particle size does not affect the kinetics of Li insertion in ensemble electrodes. Rather, the Li-insertion rates depend on the applied overpotential, electrolyte concentration, and initial state of charge. We conclude that Li diffusivity and phase propagation are not rate limiting during Li insertion in TiO2 nanocrystals. Both of these processes occur rapidly once the transformation between the low-Li anatase and high-Li orthorhombic phases begins in a particle. Instead, discontinuous kinetics of Li accumulation in TiO2 particles prior to the phase transformations limits (dis)charging rates. We demonstrate a practical means to deconvolute the nonequilibrium charging behavior in nanocrystalline electrodes through a combination of colloidal synthesis, phase field simulations, and spectroelectrochemistry.

3.
Nat Mater ; 18(9): 1024, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31366930

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
J Chem Phys ; 152(1): 014709, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914766

RESUMEN

A synthetic challenge in faceted metal oxide nanocrystals (NCs) is realizing tunable localized surface plasmon resonance (LSPR) near-field response in the infrared (IR). Cube-shaped nanoparticles of noble metals exhibit LSPR spectral tunability limited to visible spectral range. Here, we describe the colloidal synthesis of fluorine, tin codoped indium oxide (F,Sn:In2O3) NC cubes with tunable IR range LSPR for around 10 nm particle sizes. Free carrier concentration is tuned through controlled Sn dopant incorporation, where Sn is an aliovalent n-type dopant in the In2O3 lattice. F shapes the NC morphology into cubes by functioning as a surfactant on the {100} crystallographic facets. Cube shaped F,Sn:In2O3 NCs exhibit narrow, shape-dependent multimodal LSPR due to corner, edge, and face centered modes. Monolayer NC arrays are fabricated through a liquid-air interface assembly, further demonstrating tunable LSPR response as NC film nanocavities that can heighten near-field enhancement (NFE). The tunable F,Sn:In2O3 NC near-field is coupled with PbS quantum dots, via the Purcell effect. The detuning frequency between the nanocavity and exciton is varied, resulting in IR near-field dependent enhanced exciton lifetime decay. LSPR near-field tunability is directly visualized through IR range scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). STEM-EELS mapping of the spatially confined near-field in the F,Sn:In2O3 NC array interparticle gap demonstrates elevated NFE tunability in the arrays.

5.
Nat Mater ; 17(8): 710-717, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988146

RESUMEN

Degenerately doped semiconductor nanocrystals (NCs) exhibit a localized surface plasmon resonance (LSPR) in the infrared range of the electromagnetic spectrum. Unlike metals, semiconductor NCs offer tunable LSPR characteristics enabled by doping, or via electrochemical or photochemical charging. Tuning plasmonic properties through carrier density modulation suggests potential applications in smart optoelectronics, catalysis and sensing. Here, we elucidate fundamental aspects of LSPR modulation through dynamic carrier density tuning in Sn-doped In2O3 (Sn:In2O3) NCs. Monodisperse Sn:In2O3 NCs with various doping levels and sizes were synthesized and assembled in uniform films. NC films were then charged in an in situ electrochemical cell and the LSPR modulation spectra were monitored. Based on spectral shifts and intensity modulation of the LSPR, combined with optical modelling, it was found that often-neglected semiconductor properties, specifically band structure modification due to doping and surface states, strongly affect LSPR modulation. Fermi level pinning by surface defect states creates a surface depletion layer that alters the LSPR properties; it determines the extent of LSPR frequency modulation, diminishes the expected near-field enhancement, and strongly reduces sensitivity of the LSPR to the surroundings.

6.
Langmuir ; 35(6): 2146-2152, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30616351

RESUMEN

Color-changing materials have a variety of applications, ranging from smart windows to sensors. Here, we report deliquescent chromism of thin, color neutral films of nickel(II) iodide (NiI2) that are less than 10 µm thick. This behavior does not occur in the bulk material. Dark brown thin films of crystalline NiI2 turn clear when exposed to humidity and can be switched back to the dark state when mildly heated (>35 °C). This optical transition between dark and clear states of an NiI2 thin film is reversible with thermal cycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA