RESUMEN
We report high-precision mass measurements of ^{50-55}Sc isotopes performed at the LEBIT facility at NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their uncertainties and indicate significant deviations, up to 0.7 MeV, from the previously recommended mass values for ^{53-55}Sc. The results of this work provide an important update to the description of emerging closed-shell phenomena at neutron numbers N=32 and N=34 above proton-magic Z=20. In particular, they finally enable a complete and precise characterization of the trends in ground state binding energies along the N=32 isotone, confirming that the empirical neutron shell gap energies peak at the doubly magic ^{52}Ca. Moreover, our data, combined with other recent measurements, do not support the existence of a closed neutron shell in ^{55}Sc at N=34. The results were compared to predictions from both ab initio and phenomenological nuclear theories, which all had success describing N=32 neutron shell gap energies but were highly disparate in the description of the N=34 isotone.
RESUMEN
A precision mass investigation of the neutron-rich titanium isotopes ^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32 shell closure, and the overall uncertainties of the ^{52-55}Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N=32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.
RESUMEN
Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.