Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Chem A ; 125(39): 8549-8556, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34569788

RESUMEN

Time-resolved XUV-IR photoion mass spectroscopy of naphthalene conducted with broadband as well as with wavelength-selected narrowband XUV pulses reveals a rising probability of fragmentation characterized by a lifetime of 92 ± 4 fs. This lifetime is independent of the XUV excitation wavelength and is the same for all low appearance energy fragments recorded in the experiment. Analysis of the experimental data in conjunction with a statistical multistate vibronic model suggests that the experimental signals track vibrational energy redistribution on the potential energy surface of the ground-state cation. In particular, populations of the out-of-plane ring twist and the out-of-plane wave bending modes could be responsible for opening new IR absorption channels, leading to enhanced fragmentation.

2.
J Phys Chem A ; 123(14): 3068-3073, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30888820

RESUMEN

Rapid energy transfer from electronic to nuclear degrees of freedom underlies many biological processes and astrophysical observations. The efficiency of this energy transfer depends strongly on the complex interplay between electronic and nuclear motions. In this study, we report two-color pump-probe experiments that probe the relaxation dynamics of highly excited cationic states of naphthalene, a prototypical polycyclic aromatic hydrocarbon molecule, which are produced using wavelength-selected, ultrashort extreme ultraviolet pulses. Surprisingly, the relaxation lifetimes increase with the cationic excitation energy. We postulate that the observed effect is the result of a population trapping that leads to delayed relaxation.

3.
Angew Chem Int Ed Engl ; 55(36): 10741-5, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27453360

RESUMEN

The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions and related ions, with yields increasing linearly with intensity. Ionization clearly triggers a localized molecular response that occurs before the excitation energy equilibrates. Consistent with this interpretation, the effect is almost unaffected by the charge state, as fragmentation of sixfold deprotonated ubiquitin leads to a very similar fragmentation pattern. Ubiquitin responds to EUV multiphoton ionization as an ensemble of small peptides.

4.
J Phys Chem Lett ; 9(22): 6649-6655, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30388021

RESUMEN

Time-resolved valence photoelectron spectroscopy is an established tool for studies of ultrafast molecular dynamics in the gas phase. Here we demonstrate time-resolved XUV photoelectron spectroscopy from dilute aqueous solutions of organic molecules, paving the way to application of this method to photodynamics studies of organic molecules in natural environments, which so far have only been accessible to all-optical transient spectroscopies. We record static and time-resolved photoelectron spectra of a sample molecule, quinoline yellow WS, analyze its electronic structure, and follow the relaxation dynamics upon excitation with 400 nm pulses. The dynamics exhibit three time scales, of which a 250 ± 70 fs time scale is attributed to solvent rearrangement. The two longer time scales of 1.3 ± 0.4 and 90 ± 20 ps can be correlated to the recently proposed ultrafast excited-state intramolecular proton transfer in a closely related molecule, quinophthalone.

5.
Sci Rep ; 6: 19835, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26821925

RESUMEN

The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA