Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38676146

RESUMEN

Temperature fluctuations affect the performance of high-precision gravitational reference sensors. Due to the limited space and the complex interrelations among sensors, it is not feasible to directly measure the temperatures of sensor heads using temperature sensors. Hence, a high-accuracy interpolation method is essential for reconstructing the surface temperature of sensor heads. In this study, we utilized XGBoost-LSTM for sensor head temperature reconstruction, and we analyzed the performance of this method under two simulation scenarios: ground-based and on-orbit. The findings demonstrate that our method achieves a precision that is two orders of magnitude higher than that of conventional interpolation methods and one order of magnitude higher than that of a BP neural network. Additionally, it exhibits remarkable stability and robustness. The reconstruction accuracy of this method meets the requirements for the key payload temperature control precision specified by the Taiji Program, providing data support for subsequent tasks in thermal noise modeling and subtraction.

2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 510-516, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37248576

RESUMEN

Objective: To investigate the effect of oral squamous cell carcinoma (OSCC)-derived cell-free DNA (cfDNA) on the polarization of macrophages and the regulatory effect of polarized macrophages on the stemness and migration of OSCC cells. Methods: A total of 30 OSCC tissue samples, 10 dysplastic oral tissue samples, and 10 normal oral tissue samples were collected. The status of all tissue samples was confirmed by pathology analysis. Immunohistochemical (IHC) staining and immunofluorescence (IF) staining were performed to examine the cell count and location of M2 macrophages in different types of oral tissue samples. The conditioned medium (CM) of OSCC cell line CAL-27 from the human tongue was collected and the cfDNA was concentrated and isolated for identification. The macrophages were treated by cfDNA and their morphological characteristics were observed under microscope. The expression levels of polarization-related indicators were determined by RT-qPCR. CAL-27 cell line was treated with macrophage CM induced by cfDNA and the expression levels of stemness-related genes were determined by RT-qPCR. Scratch-wound assay was conducted to verify that the migration ability of CAL-27 was modulated by macrophages induced by cfDNA. Results: There were more M2 macrophages in the deep connective tissue of dysplastic oral epithelium and the stroma of OSCC compared with those in the normal oral tissues ( P<0.05). OSCC cell line CAL-27 could secret cfDNA of 10000-15000 bp in length. cfDNA secreted by CAL-27 could induced in macrophages significantly higher expression of M2-macrophage-related genes ( P<0.05). cfDNA-treated macrophages induced significantly increased expression of stemness-related genes in CAL-27 cell line ( P<0.05) and promoted the migration ability of CAL-27 cell line ( P<0.05). Conclusion: OSCC-derived cfDNA promotes stemness and migration of OSCC cell line by inducing M2 macrophage polarization.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias de la Boca/genética , Macrófagos/metabolismo , Línea Celular , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular
3.
Mater Sci Eng C Mater Biol Appl ; 122: 111932, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33641923

RESUMEN

Titanium implantation is widely used for dental replacement with advantages of excellent mechanical strength, corrosion resistance, chemical stability and biocompatibility. Some patients, however, are subject to the failure of implantation due to bone resorption, which closely related to the inflammatory responses without clear mechanisms. In this study, first we found that there were inflammatory responses and increases of osteoclasts in the surrounding tissues near by the titanium implant. Further, data revealed that the C3 was increased in the serum and surrounding tissues near by the titanium implant, and activated by classical and alternative pathways. Next, we recognized that the C3a/C3aR, no C3b played an important role in stimulating secretions of pro-inflammatory cytokines of TNF-α and MMP9 via transcription factors NF-kB and NFATc1. This cascade of responses to titanium implant leaded the differentiation and proliferation of osteoclasts in vivo and in vitro, bone resorption of surrounding tissues of Ti implant. These suggest that the cleaved C3a fragment plays predominant roles in the activation of osteoclast. Therefore, the blocking C3a activation should provide potential to prevent bone resorption and prolong the survival of biomaterial implants.


Asunto(s)
Resorción Ósea , Osteoclastos , Diferenciación Celular , Complemento C3a , Humanos , Titanio
4.
Adv Healthc Mater ; 10(12): e2100196, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33987977

RESUMEN

The osteogenic potential of mesenchymal stem cells (MSCs) is severely impaired under persistent inflammation of periodontitis. A highly efficient way to promote or rescue osteogenic potential of MSCs under inflammation remains an unmet goal. Herein, metformin carbon dots (MCDs) with excellent biocompatibility are prepared from metformin hydrochloride and citric acid via a hydrothermal method. The MCDs can more effectively enhance the alkaline phosphatase (ALP) activity, calcium deposition nodules formation, expression of osteogenic genes and proteins in rat bone marrow mesenchymal stem cells (rBMSCs) than metformin under both inflammatory and normal conditions. Moreover, a novel pathway of extracellular signal-regulated kinases (ERK)/AMP-activated protein kinase (AMPK) signaling is involved in the MCDs-induced osteogenesis. In periodontitis rats, MCDs can effectively regenerate the lost alveolar bone, but not the metformin. Taken together, MCDs can be the promising candidate nanomaterial for periodontitis treatment. This work may provide a new pharmacological target of ERK/AMPK pathway for treating bone loss and also give additional insights into developing nanodrugs from the numerous medications.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Metformina , Proteínas Quinasas Activadas por AMP , Animales , Regeneración Ósea , Carbono , Diferenciación Celular , Metformina/farmacología , Osteogénesis , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA