Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Biol Chem ; 300(2): 105591, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141769

RESUMEN

Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.


Asunto(s)
Anexina A2 , Artritis Reumatoide , Sistema de Señalización de MAP Quinasas , ARN Largo no Codificante , Sinoviocitos , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/fisiopatología , Proliferación Celular/genética , Células Cultivadas , Activación Enzimática/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Fosforilación/genética , Unión Proteica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sinoviocitos/citología , Sinoviocitos/metabolismo
2.
Mol Med ; 30(1): 15, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254035

RESUMEN

BACKGROUND: In heart failure (HF), mitochondrial dysfunction and metabolic remodeling lead to a reduction in energy productivity and aggravate cardiomyocyte injury. Supplementation with α-ketoglutarate (AKG) alleviated myocardial hypertrophy and fibrosis in mice with HF and improved cardiac insufficiency. However, the myocardial protective mechanism of AKG remains unclear. We verified the hypothesis that AKG improves mitochondrial function by upregulating NAD+ levels and activating silent information regulator 2 homolog 1 (SIRT1) in cardiomyocytes. METHODS: In vivo, 2% AKG was added to the drinking water of mice undergoing transverse aortic constriction (TAC) surgery. Echocardiography and biopsy were performed to evaluate cardiac function and pathological changes. Myocardial metabolomics was analyzed by liquid chromatography‒mass spectrometry (LC‒MS/MS) at 8 weeks after surgery. In vitro, the expression of SIRT1 or PINK1 proteins was inhibited by selective inhibitors and siRNA in cardiomyocytes stimulated with angiotensin II (AngII) and AKG. NAD+ levels were detected using an NAD test kit. Mitophagy and ferroptosis levels were evaluated by Western blotting, qPCR, JC-1 staining and lipid peroxidation analysis. RESULTS: AKG supplementation after TAC surgery could alleviate myocardial hypertrophy and fibrosis and improve cardiac function in mice. Metabolites of the malate-aspartate shuttle (MAS) were increased, but the TCA cycle and fatty acid metabolism pathway could be inhibited in the myocardium of TAC mice after AKG supplementation. Decreased NAD+ levels and SIRT1 protein expression were observed in heart of mice and AngII-treated cardiomyocytes. After AKG treatment, these changes were reversed, and increased mitophagy, inhibited ferroptosis, and alleviated damage in cardiomyocytes were observed. When the expression of SIRT1 was inhibited by a selective inhibitor and siRNA, the protective effect of AKG was suppressed. CONCLUSION: Supplementation with AKG can improve myocardial hypertrophy, fibrosis and chronic cardiac insufficiency caused by pressure overload. By increasing the level of NAD+, the SIRT-PINK1 and SIRT1-GPX4 signaling pathways are activated to promote mitophagy and inhibit ferroptosis in cardiomyocytes, which ultimately alleviates cardiomyocyte damage.


Asunto(s)
Estenosis de la Válvula Aórtica , Ferroptosis , Insuficiencia Cardíaca , Ácidos Cetoglutáricos , Mitofagia , Angiotensina II , Cromatografía Liquida , Ferroptosis/efectos de los fármacos , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Hipertrofia , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/uso terapéutico , Mitofagia/efectos de los fármacos , Miocitos Cardíacos , NAD , Proteínas Quinasas , ARN Interferente Pequeño , Sirtuina 1 , Espectrometría de Masas en Tándem , Animales , Ratones
3.
J Pineal Res ; 76(5): e12987, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38975671

RESUMEN

Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.


Asunto(s)
Ferroptosis , Melatonina , Ratones Noqueados , Privación de Sueño , Animales , Ratones , Melatonina/metabolismo , Melatonina/farmacología , Privación de Sueño/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Peroxidación de Lípido , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa
4.
Environ Sci Technol ; 58(31): 13833-13844, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39012163

RESUMEN

The emerging contaminant triclosan (TCS) is widely distributed both in surface water and in wastewater and poses a threat to aquatic organisms and human health due to its resistance to degradation. The dioxygenase enzyme TcsAB has been speculated to perform the initial degradation of TCS, but its precise catalytic mechanism remains unclear. In this study, the function of TcsAB was elucidated using multiple biochemical and molecular biology methods. Escherichia coli BL21(DE3) heterologously expressing tcsAB from Sphingomonas sp. RD1 converted TCS to 2,4-dichlorophenol. TcsAB belongs to the group IA family of two-component Rieske nonheme iron ring-hydroxylating dioxygenases. The highest amino acid identity of TcsA and the large subunits of other dioxygenases in the same family was only 35.50%, indicating that TcsAB is a novel dioxygenase. Mutagenesis of residues near the substrate binding pocket decreased the TCS-degrading activity and narrowed the substrate spectrum, except for the TcsAF343A mutant. A meta-analysis of 1492 samples from wastewater treatment systems worldwide revealed that tcsA genes are widely distributed. This study is the first to report that the TCS-specific dioxygenase TcsAB is responsible for the initial degradation of TCS. Studying the microbial degradation mechanism of TCS is crucial for removing this pollutant from the environment.


Asunto(s)
Dioxigenasas , Triclosán , Triclosán/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/genética , Biodegradación Ambiental , Escherichia coli , Sphingomonas/enzimología , Sphingomonas/metabolismo , Contaminantes Químicos del Agua/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38403735

RESUMEN

There is inconsistent evidence for an association of obesity with white matter microstructural alterations. Such inconsistent findings may be related to the cumulative effects of obesity and alcohol dependence. This study aimed to investigate the possible interactions between alcohol dependence and overweight/obesity on white matter microstructure in the human brain. A total of 60 inpatients with alcohol dependence during early abstinence (44 normal weight and 16 overweight/obese) and 65 controls (42 normal weight and 23 overweight/obese) were included. The diffusion tensor imaging (DTI) measures [fractional anisotropy (FA) and radial diffusivity (RD)] of the white matter microstructure were compared between groups. We observed significant interactive effects between alcohol dependence and overweight/obesity on DTI measures in several tracts. The DTI measures were not significantly different between the overweight/obese and normal-weight groups (although widespread trends of increased FA and decreased RD were observed) among controls. However, among the alcohol-dependent patients, the overweight/obese group had widespread reductions in FA and widespread increases in RD, most of which significantly differed from the normal-weight group; among those with overweight/obesity, the alcohol-dependent group had widespread reductions in FA and widespread increases in RD, most of which were significantly different from the control group. This study found significant interactive effects between overweight/obesity and alcohol dependence on white matter microstructure, indicating that these two controllable factors may synergistically impact white matter microstructure and disrupt structural connectivity in the human brain.

6.
Environ Res ; 261: 119690, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39068967

RESUMEN

Companion animals have the potential to greatly enhance the physical and mental health of humans, thus leading to an increased focus on the interactions between humans and pets. Currently, the inappropriate and excessive utilization of antimicrobial agents has become prevalent in veterinary clinical practice for pets. This antibiotic contamination phenomenon has a profound impact on the enrichment of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) in pets. However, the pet-associated resistome, especially the novel ARGs in pets, represents a relatively neglected area. In this study, we successfully constructed a total of 12 libraries using the functional metagenomics approach to assess the diversity of ARGs in pet cats and dogs from four pet hospitals. Through the integration of functional screening and high-throughput sequencing, a total of 122 antibiotic resistance determinants were identified, of which 15 were classified as putative novel ARGs originating from five classes. Functional assessment demonstrated that 6 novel ARGs including one ß-lactam, two macrolides, two aminoglycosides, and one rifamycin (RIF), namely blaPF, ermPF, msrPF, aac(6')PF, aph(3')PF, and arrPF, exhibited functionally activity in conferring bacterial phenotypic resistance by increasing the minimum inhibitory concentrations (MICs) with a 4- to 128-fold. Genetic context analysis demonstrated that, with the exception of aac(6')PF and arrPF, the remaining four novel ARGs were found adjacent to mobile genetic elements (MGEs) including IS elements or transposases, which provided a prerequisite for horizontal transfer of these novel ARGs, thereby offering an explanation for their detection in diverse samples collected from various sampling sites. The current study has unveiled the significant role of cat and dog feces as one source of reservoirs of diverse novel ARGs, while also highlighting the potential adverse consequences of their further spread to medically significant pathogens and human commensal organisms.

7.
Environ Toxicol ; 39(5): 2908-2926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38299230

RESUMEN

BACKGROUND: Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD-related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. METHOD: We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome-based CRC prognostic models. RESULT: Our integrated model successfully identified differentially expressed PCD-related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high-risk and low-risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. CONCLUSION: The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Pronóstico , Aprendizaje Automático , Neoplasias Colorrectales/genética
8.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123959

RESUMEN

Timely and accurate detection of viruses is crucial for infection diagnosis and treatment. However, it remains a challenge to develop a portable device that meets the requirement of being portable, powerless, user-friendly, reusable, and low-cost. This work reports a compact ∅30 × 48 mm portable powerless isothermal amplification detection device (material cost ∼$1 USD) relying on LAMP (Loop-Mediated Isothermal Amplification). We have proposed chromatographic-strip-based microporous permeation technology which can precisely control the water flow rate to regulate the exothermic reaction. This powerless heating combined with phase-change materials can maintain a constant temperature between 50 and 70 °C for a duration of up to 49.8 min. Compared with the conventional methods, it avoids the use of an additional insulation layer for heat preservation, greatly reducing the size and cost. We have also deployed a color card and a corresponding algorithm to facilitate color recognition, data analysis, and storage using a mobile phone. The experimental results demonstrate that our device exhibits the same limit of detection (LOD) as the ProFlex PCR for SARS-CoV-2 pseudovirus samples, with that for both being 103 copies/µL, verifying its effectiveness and reliability. This work offers a timely, low-cost, and easy way for respiratory infectious disease detection, which could provide support in curbing virus transmission and protecting the health of humans and animals, especially in remote mountainous areas without access to electricity or trained professionals.


Asunto(s)
COVID-19 , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Humanos , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economía , Límite de Detección
9.
Molecules ; 29(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543035

RESUMEN

To investigate the influence of deashing on fusion characteristics, a combined method of water and acid washing with different sequences (water washing followed by acid washing, and acid washing followed by water washing) was used to treat the biochar of bamboo shoot shells (BBSSs). The results show that deashing decreased the K content of the biochar from 50.3% to 1.08% but increased the Si content from 33.48% to 89.15%. The formation of silicates and aluminosilicates from alkali metal oxides with silicon was an inevitable result of ash phase transformation at the high temperatures used to improve the fusion temperature (>1450 °C). The thermochemical behavior of ash mainly occurs at 1000 °C. The deashing treatment significantly reduced the reaction intensity during the high-temperature process. This significantly increased the thermal stability of the ash. The adjustment of the washing sequence had a slight impact on the chemical compositions, but the differences in ash micromorphology were obvious. Deashing treatments with different washing sequences can significantly improve ash fusion properties effectively and reduce the risk of scaling, slagging, and corrosion. This study provides a new and reasonable strategy for the deashing of biochar to commercially utilize bamboo shoot shell resources.


Asunto(s)
Álcalis , Carbón Orgánico , Carbón Orgánico/química , Temperatura , Agua , Ceniza del Carbón
10.
Aesthet Surg J ; 44(8): NP574-NP584, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591553

RESUMEN

Non-tuberculous mycobacteria (NTM) infection of the skin and soft tissues is a complication of cosmetic procedures. The incidence of cutaneous NTM infections has increased significantly as aesthetic operations have become more commonplace. With the rise of cosmetic tourism, the geographic expansion of NTM infections is a major concern. Due to the unique pathogenesis of NTM infections, diagnosis and treatment remain significant challenges for clinicians. Clinical management relies on a combination of antibiotic therapy with drug susceptibility testing and appropriate surgical debridement. Some new drugs, photodynamic therapy, and bacteriophage therapy have been developed in recent years, and may improve the aesthetic outcomes. This review summarizes the cosmetic procedures prone to NTM infections in recent years and their clinical features. We propose a 2-stage treatment procedure, including a hospitalization phase and a follow-up phase. We aim to increase the alertness of clinicians to NTM infections for timely detection and treatment.


Asunto(s)
Antibacterianos , Técnicas Cosméticas , Infecciones por Mycobacterium no Tuberculosas , Humanos , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/etiología , Infecciones por Mycobacterium no Tuberculosas/terapia , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Técnicas Cosméticas/efectos adversos , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Micobacterias no Tuberculosas/aislamiento & purificación
11.
Angew Chem Int Ed Engl ; 63(7): e202319730, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168882

RESUMEN

Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced crystallization of the halide-mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non-radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low-dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+ ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+ -guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi-2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure-blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide-mixed blue perovskite crystallization by manipulating the characteristics of grain-growth substrate.

12.
Angew Chem Int Ed Engl ; : e202407024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864254

RESUMEN

Ni-rich cathodes have been intensively adopted in Li-ion batteries to pursuit high energy density, which still suffering irreversible degradation at high voltage. Some unstable lattice O2- species in Ni-rich cathodes would be oxidized to singlet oxygen 1O2 and released at high volt, which lead to irreversible phase transfer from the layered rhombohedral (R) phase to a spinel-like (S) phase. To overcome the issue, the amphiphilic copolymers (UMA-Fx) electrolyte were prepared by linking hydrophobic C-F side chains with hydrophilic subunits, which could self-assemble on Ni-rich cathode surface and convert to stable cathode-electrolyte interphase layer. Thereafter, the oxygen releasing of polymer coated cathode was obviously depressed and substituted by the Co oxidation (Co3+→Co4+) at high volt (>4.2 V), which could suppressed irreversible phase transfer and improve cycling stability. Moreover, the amphiphilic polymer electrolyte was also stable with Li anode and had high ion conductivity. Therefore, the NCM811//UMA-F6//Li pouch cell exhibited outstanding energy density (362.97 Wh/kg) and durability (cycled 200 times at 4.7 V), which could be stalely cycled even at 120°C without short circuits or explosions.

13.
BMC Neurol ; 23(1): 444, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102573

RESUMEN

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a recurring inflammatory demyelinating disease that is commonly observed in Asian countries like China. Prior investigations have shown that mycophenolate mofetil (MMF) with better biocompatibility compared to azathioprine (AZA), and can prevent relapses of NMOSD, but the efficacy was controversially reported in different NMOSD cases. We aimed to explore the factors that weaken efficacy of MMF in NMOSD. METHODS: A total of 34 NMOSD patients treated with MMF were prospectively enrolled and grouped according to the therapeutic efficacy as effective group (EG, n = 23) versus less-effective group (LEG, n = 11). The purine metabolites were profiled in serum samples and gut microbiota was analyzed using 16S rRNA sequencing with stool samples from the same patients. RESULTS: Purine salvage pathway (PSP) metabolites (inosine, hypoxanthine, xanthine, guanine and uric acid) in the serum of NMOSD patients were elevated in the LEG compared to EG (p < 0.05). Additionally, the richness and microbial diversity of gut microbiota was found to be similar between EG and LEG patients. However, LEG patients had increased presence of Clostridium and Synergistes but decreased abundance of the Coprococcus genus. CONCLUSIONS: The PSP metabolites and composition of the gut microbiota were changed between patients with or without optimal clinical response after MMF treatment. This may help us to understand the pharmacodynamics of MMF in NMOSD.


Asunto(s)
Microbioma Gastrointestinal , Neuromielitis Óptica , Humanos , Ácido Micofenólico/uso terapéutico , Neuromielitis Óptica/tratamiento farmacológico , ARN Ribosómico 16S , Resultado del Tratamiento , Azatioprina/uso terapéutico , Recurrencia
14.
J Nanobiotechnology ; 21(1): 483, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104180

RESUMEN

Salmonellosis is a globally extensive food-borne disease, which threatens public health and results in huge economic losses in the world annually. The rising prevalence of antibiotic resistance in Salmonella poses a significant global concern, emphasizing an imperative to identify novel therapeutic agents or methodologies to effectively combat this predicament. In this study, self-assembly hydrogen sulfide (H2S)-responsive nanoprodrugs were fabricated with poly(α-lipoic acid)-polyethylene glycol grafted rhein and geraniol (PPRG), self-assembled into core-shell nanoparticles via electrostatic, hydrophilic and hydrophobic interactions, with hydrophilic exterior and hydrophobic interior. The rhein and geraniol are released from self-assembly nanoprodrugs PPRG in response to Salmonella infection, which is known to produce hydrogen sulfide (H2S). PPRG demonstrated stronger antibacterial activity against Salmonella compared with rhein or geraniol alone in vitro and in vivo. Additionally, PPRG was also able to suppress the inflammation and modulate gut microbiota homeostasis. In conclusion, the as-prepared self-assembly nanoprodrug sheds new light on the design of natural product active ingredients and provides new ideas for exploring targeted therapies for specific Enteropathogens. Graphical  illustration for construction of self-assembly nanoprodrugs PPRG and its antibacterial and anti-inflammatory activities on experimental Salmonella infection in mice.


Asunto(s)
Sulfuro de Hidrógeno , Infecciones por Salmonella , Animales , Ratones , Salmonella typhimurium , Sulfuro de Hidrógeno/química , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/microbiología , Antibacterianos/farmacología
15.
Cureus ; 16(4): e58048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38738003

RESUMEN

Anastomotic stricture has an incidence rate of 6-10% and typically manifests three to six months after colorectal surgery. Immediate postoperative stricture is exceedingly rare and underreported in the literature. The possible etiology includes poor circulation, leakage, local inflammation, or infection. We report a rare case of a patient with total obstruction by mucus on the anastomosis site on postoperation day two. We used a sigmoidoscope to remove mucus material, following which the patient recovered well.

16.
Obes Facts ; 17(2): 158-168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246158

RESUMEN

INTRODUCTION: The purpose of this study was to compare the difference in abdominal fat distribution between different metabolic groups and find the ectopic fat with the most risk significance. METHODS: A total of 98 subjects were enrolled; there were 53 cases in the normal glucose metabolism group and 45 cases in the abnormal glucose metabolism group. Chemical shift-encoded magnetic resonance imaging was applied for quantification of pancreatic fat fraction (PFF) and hepatic fat fraction (HFF), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT). The correlation and the difference of fat distribution between different metabolism groups were analyzed. The receiver operating characteristic (ROC) curve was used to analyze the suggestive effect of different body fat fraction. RESULTS: Correlation analysis showed that body mass index (BMI) had the strongest correlation with fasting insulin (r = 0.473, p < 0.001), HOMA-IR (r = 0.363, p < 0.001), and C-reactive protein (r = 0.245, p < 0.05). Pancreatic fat has a good correlation with fasting blood glucose (r = 0.247, p < 0.05) and HbA1c (r = 0.363, p < 0.001). With the increase of BMI, PFF, VAT, and SAT showed a clear upward trend, but liver fat was distributed relatively more randomly. The pancreatic fat content in the abnormal glucose metabolism group is significantly higher than that in the normal group, and pancreatic fat is also a reliable indicator of abnormal glucose metabolism, especially in the normal and overweight groups (the area under the curve was 0.859 and 0.864, respectively). CONCLUSION: MR-based fat quantification techniques can provide additional information on fat distribution. There are differences in fat distribution among people with different metabolic status. People with more severe pancreatic fat deposition have a higher risk of glucose metabolism disorders.


Asunto(s)
Resistencia a la Insulina , Humanos , Índice de Masa Corporal , Grasa Abdominal/diagnóstico por imagen , Páncreas/diagnóstico por imagen , Páncreas/metabolismo , Páncreas/patología , Grasa Intraabdominal/metabolismo , Imagen por Resonancia Magnética , Glucosa/metabolismo
17.
Int J Biol Macromol ; 265(Pt 1): 130911, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492693

RESUMEN

In this study, the solubilization and structural changes of lignin in naked oat stems were investigated under subcritical water autohydrolysis systems (170-210 °C, 0.68-1.85 MPa). In this system, Hemicellulose was preferentially hydrolyzed in the liquid water at elevated temperatures, leading to the production of acetic acid and glucuronic acid, which acidified the reaction system. Under acidic and high-temperature conditions, lignin primarily underwent degradation and condensation reactions. At autohydrolysis temperatures below 190 °C and autohydrolysis pressures below 1.22 MPa, lignin degradation was predominant, realizing a maximum lignin removal of 47.8 % and breakage of numerous ß-O-4 bonds from lignin. At autohydrolysis temperatures above 190 °C and autohydrolysis pressures above 1.22 MPa, lignin condensation dominated, with an increase in the amount of organic acids generated upon hemicellulose degradation, leading to condensation reactions with the degraded low-molecular-weight lignin. The degree of lignin condensation was positively correlated with the temperature of the reaction system. This study provides essential insights into the dynamic changes in the structure of lignin in both the hydrolysis residue and hydrolysis solution during subcritical water autohydrolysis.


Asunto(s)
Lignina , Agua , Lignina/química , Avena , Compuestos Orgánicos , Temperatura , Hidrólisis
18.
ACS Omega ; 9(20): 21974-21982, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799303

RESUMEN

To investigate the effect of combustion temperatures on element transformation of ash, bamboo was fired using a muffle furnace at 550, 600, 700, 800, 900, and 1000 °C. Chemical compositions, micromorphology, and mineral and thermal behavior of ash were characterized. The main components included K2O, SiO2, P2O5, MgO, and CaO at a temperature of 550 °C. The high temperature decreased the content of K2O from 63.03 to 35.71% to improve the fusion characteristics of bamboo ash. 700 °C was a key temperature for designing a combustion system of bamboo, where bamboo ash had a maximum volatility. The mineral phases were chlorides, carbonates, and sulfates below a temperature of 700 °C, which transformed to complex silicates, aluminosilicates, and phosphates above a temperature of 700 °C. The temperature ranges of the three main stages were 550-980, 980-1190, and 1190-1500 °C, corresponding to mass losses of 11.52, 6.13, and 17.17%, respectively.

19.
Int J Food Microbiol ; 417: 110708, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38653121

RESUMEN

Salmonella Thompson is a prevalent foodborne pathogen and a major threat to food safety and public health. This study aims to reveal the dissemination mechanism of S. Thompson with co-resistance to ceftriaxone and ciprofloxacin. In this study, 181 S. Thompson isolates were obtained from a retrospective screening on 2118 serotyped Salmonella isolates from foods and patients, which were disseminated in 12 of 16 districts in Shanghai, China. A total of 10 (5.5 %) S. Thompson isolates exhibited resistance to ceftriaxone (MIC ranging from 8 to 32 µg/mL) and ciprofloxacin (MIC ranging from 2 to 8 µg/mL). The AmpC ß-lactamase gene blaCMY-2 and plasmid-mediated quinolone resistance (PMQR) genes of qnrS and qepA were identified in the 9 isolates. Conjugation results showed that the co-transfer of blaCMY-2, qnrS, and qepA occurred on the IncC plasmids with sizes of ∼150 (n = 8) or ∼138 (n = 1) kbp. Three typical modules of ISEcp1-blaCMY-2-blc-sugE, IS26-IS15DIV-qnrS-ISKpn19, and ISCR3-qepA-intl1 were identified in an ST3 IncC plasmid pSH11G0791. Phylogenetic analysis indicated that IncC plasmids evolved into Lineages 1, 2, and 3. IncC plasmids from China including pSH11G0791 in this study fell into Lineage 1 with those from the USA, suggesting their close genotype relationship. In conclusion, to our knowledge, it is the first report of the co-existence of blaCMY-2, qnrS, and qepA in IncC plasmids, and the conjugational transfer contributed to their dissemination in S. Thompson. These findings underline further challenges for the prevention and treatment of Enterobacteriaceae infections posed by IncC plasmids bearing blaCMY-2, qnrS, and qepA.


Asunto(s)
Antibacterianos , Diarrea , Plásmidos , Salmonella enterica , Alimentos Marinos , Humanos , Plásmidos/genética , China , Antibacterianos/farmacología , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Salmonella enterica/efectos de los fármacos , Alimentos Marinos/microbiología , Diarrea/microbiología , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Estudios Retrospectivos , Farmacorresistencia Bacteriana Múltiple/genética , Ciprofloxacina/farmacología , Ceftriaxona/farmacología , Proteínas Bacterianas/genética , Serogrupo , Microbiología de Alimentos
20.
Environ Pollut ; 360: 124618, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067736

RESUMEN

The intrinsic issue associated with the application of microbes for practical pollution remediation involves maintaining the expected activity of engaged strains or consortiums as effectively as that noted under laboratory conditions. Faced with various stress factors, degraders with dormancy ability are more likely to survive and exhibit degradation activity. In this study, a hydrocarbonoclastic and halotolerant strain, Gordonia polyisoprenivorans ZM27, was isolated via stimulation with resuscitation-promoting factor (Rpf). Long-term exposure to dual stresses of 10% NaCl and starvation induced ZM27 to enter a viable but nonculturable (VBNC)-like state, and ZM27 cells could be resuscitated upon Rpf stimulation. Notable changes in both morphological and physiological characteristics between VBNC-like ZM27 cells and resuscitated cells confirmed the response to Rpf and their robust resistance against harsh environments. Whole-genome sequencing and analysis indicated ZM27 could be a generalist degrader with dormancy ability. Subsequently, VBNC-like ZM27 was applied in a soil microcosm experiment to investigate the practical application potential under harsh conditions. VBNC-like ZM27 combined with Rpf stimulation exhibited the most effective biodegradation performance, and the initial n-hexadecane content (1000 mg kg-1) decreased by 63.29% after 14-day incubation. Based on 16S rRNA amplicon sequencing and analysis, Gordonia exhibited a positive response to Rpf stimulation. The relative abundance of genus Gordonia was negatively correlated with that of Alcanivorax, a genus of obligate hydrocarbon degrader with the greatest abundance during soil incubation. Based on the degradation profile and community analysis, generalist Gordonia may be more efficient in hydrocarbon degradation than specialist Alcanivorax under harsh conditions. The characteristics of ZM27, including its sustainable culturability under long-term stress, response to Rpf and robust performance in soil microcosms, are valuable for the remediation of petroleum pollution under stressful conditions. Our work validated the importance of dormancy and highlighted the underestimated role of low-activity degraders in petroleum remediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA