Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(34): 24033-24041, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39146528

RESUMEN

Palladium (Pd)-based single-atom catalysts (SACs) have shown outstanding selectivity for semihydrogenation of alkynes, but most Pd single sites coordinated with highly electronegative atoms (such as N, O, and S) of supports will result in a decrease in the electron density of Pd sites, thereby weakening the adsorption of reactants and reducing catalytic performance. Constructing a rich outer-shell electron environment of Pd single-atom sites by changing the coordination structure offers a novel opportunity to enhance the catalytic efficiency with excellent alkene selectivity. Therefore, in this work, we first propose the in situ preparation of isolated Pd sites encapsulated within Al/Si-rich ZSM-5 structure using the one-pot seed-assisted growth method. Pd1@ZSM-5 features Pd-O-Al/Si bonds, which can boost the domination of d-electron near the Fermi level, thereby promoting the adsorption of substrates on Pd sites and reducing the energy barrier for the semihydrogenation of alkynes. In semihydrogenation of phenylacetylene, Pd1@ZSM-5 catalyst performs the highest turnover frequency (TOF) value of 33582 molC═C/molPd/h with 96% selectivity of styrene among the reported heterogeneous catalysts and nearly 17-fold higher than that of the commercial Lindlar catalyst (1992 molC═C/molPd/h). This remarkable catalytic performance can be retained even after 6 cycles of usage. Particularly, the zeolitic confinement structure of Pd1@ZSM-5 enables precise shape-selective catalysis for alkyne reactants with a size less than 4.3 Å.

2.
J Am Chem Soc ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39267603

RESUMEN

The innovation of synthetic strategies for selective B-H functionalization is a pivotal objective in the realm of boron cluster chemistry. However, the precise, efficient, and rapid functionalization of a B-H bond of carboranes that is distant from the existing functional groups remains intractable owing to the limited approaches for site-selective control from the established methods. Herein, we report a dative bonding activation strategy for the selective functionalization of a nonclassical remote B-H site of nido-carboranes. By leveraging the electronic effects brought by the exopolyhedral B(9)-dative bond, a cross-nucleophile B-H/S-H coupling protocol of the distal B(5)-H bond has been established. The dative bond not only amplifies the subtle reactivity difference among B-H bonds but also significantly changes the reactive sites, further infusing nido-carboranes with additional structural diversity. This reaction paradigm features mild conditions, rapid conversion, efficient production, broad scope, and excellent group tolerance, thus enabling the applicability to an array of complex bioactive molecules. The efficient and scalable reaction platform is amenable to the modular construction of photofunctional molecules and boron delivery agents for boron neutron capture therapy. This work not only provides an unprecedented solution for the selective diversification of distal B-H sites in nido-carboranes but also holds the potential for expediting the discovery of novel carborane-based functional molecules.

3.
J Am Chem Soc ; 145(13): 7638-7647, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946888

RESUMEN

The efficient and selective functionalization of icosahedral carboranes (C2B10H12) at the boron vertexes is a long-standing challenge owing to the presence of 10 inert B-H bonds in a similar chemical environment. Herein, we report a new reaction paradigm for direct B-H functionalization of icosahedral carboranes via B-H homolysis enabled by a nitrogen-centered radical-mediated hydrogen atom transfer (HAT) strategy. Both the HAT process of the carborane B-H bond and the resulting boron-centered carboranyl radical intermediate have been confirmed experimentally. The reaction occurs at the most electron-rich boron vertex with the lowest B-H bond dissociation energy (BDE). Using this strategy, diverse carborane derivatization, including thiolation, selenation, alkynylation, alkenylation, cyanation, and halogenation, have been achieved in satisfactory yields under a photoinitiated condition in a metal-free and redox-neutral fashion. Moreover, the synthetic utility of the current protocol was also demonstrated by both the scale-up reaction and the construction of carborane-based functional molecules. Therefore, this methodology opens a radical pathway to carborane functionalization, which is distinct from the B-H heterolytic mechanism in the traditional strategies.

4.
Chemistry ; 26(18): 4150-4156, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-31750955

RESUMEN

Molybdenum disulfide (MoS2 ) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance. Herein, the 3D carbon foam (denoted as CF) supported edge-rich N-doped MoS2 nanoflakes were successfully fabricated by using the commercially available polyurethane foam (PU) as the 3D substrate and PMo12 O40 3- clusters (denoted as PMo12 ) as the Mo source through redox polymerization, followed by sulfurization. Owing to the uniform distribution of nanoscale Mo sources and 3D carbon foam substrate, the as-prepared MoS2 -CF composite possessed well-exposed active edge sites and enhanced electrical conductivity. Systematic investigation demonstrated that the MoS2 -CF composite showed high HER performance with a low overpotential of 92 mV in 1.0 m KOH and 155 mV in 0.5 m H2 SO4 at a current density of 10 mA cm-2 . This work offers a new pathway for the rational design of MoS2 -based HER electrocatalysts.

5.
Nat Commun ; 15(1): 7934, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256342

RESUMEN

Heteropolycyclic molecular systems, which are essential components in the fields of materials and pharmacology, frequently consist of 2D extended organic aromatic rings. Here, we introduce a type of inorganic-organic hybrid 3D conjugates by merging an aromatic boron cluster with a phosphine and a π-conjugated unit. To achieve this, a couple-close synthetic strategy via B-H activation of nido-carboranes with alkynes has been developed, which leads to diverse boron cluster-extended phosphoniums in a twisted structure with high yields under mild conditions. Experimental and theoretical results reveal that the fusion between the boron cluster and the formed borophosphonium heterocycle facilitates electron delocalization throughout the structure. The unusual framework demonstrates distinct properties from bare boron clusters and pure aromatic ring-extended counterparts, such as improved thermal/chemical stability and photophysical properties. Thus, the boron cluster-based 3D conjugates expand the library of aromatic-based heterocyclics, showcasing great potential in functional materials.

6.
Nat Commun ; 15(1): 2984, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582903

RESUMEN

Metamaterials composed of different geometrical primitives have different properties. Corresponding to the fundamental geometrical forms of line, plane, and surface, beam-, plate-, and shell-based lattice metamaterials enjoy many advantages in many aspects, respectively. To fully exploit the advantages of each structural archetype, we propose a multilayer strategy and topology optimization technique to design lattice metamaterial in this study. Under the frame of the multilayer strategy, the design space is enlarged and diversified, and the design freedom is increased. Topology optimization is applied to explore better designs in the larger and diverse design space. Beam-plate-shell-combined metamaterials automatically emerge from the optimization to achieve ultrahigh stiffness. Benefiting from high stiffness, energy absorption performances of optimized results also demonstrate substantial improvements under large geometrical deformation. The multilayer strategy and topology optimization can also bring a series of tunable dimensions for lattice design, which helps achieve desired mechanical properties, such as isotropic elasticity and functionally grading material property, and superior performances in acoustic tuning, electrostatic shielding, and fluid field tuning. We envision that a broad array of synthetic and composite metamaterials with unprecedented performance can be designed with the multilayer strategy and topology optimization.

7.
bioRxiv ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693461

RESUMEN

Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs. We optimized a bacterial CRISPR-hybrid system coupled with FACS, and identified novel high affinity RNA aptamers orthogonal to existing aptamer-RBP pairs. Application of orthogonal aptamer-RBP pairs in multiplexed CRISPR allowed effective simultaneous transcriptional activation and repression of endogenous genes in mammalian cells.

8.
Mol Cancer Ther ; 22(8): 913-925, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196158

RESUMEN

Overexpression of nectin cell adhesion protein 4 correlates with cancer progression and poor prognosis in many human malignancies. Enfortumab vedotin (EV) is the first nectin-4-targeting antibody-drug conjugate (ADC) approved by the FDA for the treatment of urothelial cancer. However, inadequate efficacy has limited progress in the treatment of other solid tumors with EV. Furthermore, ocular, pulmonary, and hematologic toxic side effects are common in nectin-4-targeted therapy, which frequently results in dose reduction and/or treatment termination. Thus, we designed a second generation nectin-4-specific drug, 9MW2821, based on interchain-disulfide drug conjugate technology. This novel drug contained a site specifically conjugated humanized antibody and the cytotoxic moiety monomethyl auristatin E. The homogenous drug-antibody ratio and novel linker chemistry of 9MW2821 increased the stability of conjugate in the systemic circulation, enabling highly efficient drug delivery and avoiding off-target toxicity. In preclinical evaluation, 9MW2821 exhibited nectin-4-specific cell binding, efficient internalization, bystander killing, and equivalent or superior antitumor activity compared with EV in both cell line-derived xenograft and patient-derived xenograft (PDX) models. In addition, 9MW2821 demonstrated a favorable safety profile; the highest nonseverely toxic dose in monkey toxicologic studies was 6 mg/kg, with milder adverse events compared with EV. Overall, 9MW2821 is a nectin-4-directed, investigational ADC based on innovative technology that endowed the drug with compelling preclinical antitumor activity and a favorable therapeutic index. The 9MW2821 ADC is being investigated in a phase I/II clinical trial (NCT05216965 and NCT05773937) in patients with advanced solid tumors.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Nectinas , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/tratamiento farmacológico , Moléculas de Adhesión Celular , Línea Celular Tumoral
9.
Chem Sci ; 13(37): 11074-11082, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320483

RESUMEN

The efficient transformation of nitroaromatics to functional molecules such as N-heterocycles has been an attractive and significant topic in synthesis chemistry. Herein, a photoexcited nitro-induced strategy for switchable annulations of 2-nitroarylethanols was developed to construct N-heterocycles including indoles, N-hydroxyl oxindoles and N-H oxindoles. The metal- and photocatalyst-free reaction proceeds through intramolecular redox C-N coupling of branched hydroxyalkyl and nitro units, which is initiated by a double hydrogen atom abstraction (d-HAA) process. The key to the switchable reaction outcomes is the mediation of a diboron reagent by its favorable oxy-transfer reactivity to in situ generated nitroso species. The utility of this protocol was well demonstrated by broad substrate scope, excellent yields, functional group tolerance and wide applications. Finally, detailed mechanistic studies were performed, and kinetic isotope effect (KIE) experiments indicate that the homolysis of the C-H bond is involved in the rate-determining step.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA