Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 49(7): 1802-1805, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560867

RESUMEN

We show that in highly multimoded nonlinear photonic systems, the optical thermodynamic pressures emerging from different species of the optical field obey Dalton's law of partial pressures. In multimode settings, the optical thermodynamic pressure is defined as the conjugate to the extensive variable associated with the system's total number of modes and is directly related to the actual electrodynamic radiation forces exerted at the physical boundaries of the system. Here, we extend this notion to photonic configuration supporting different species of the optical field. Under thermal equilibrium conditions, we formally derive an equation that establishes a direct link between the partial thermodynamic pressures and the electrodynamic radiation pressures exerted by each polarization species. Our theoretical framework provides a straightforward approach for quantifying the total radiation pressures through the system's thermodynamic variables without invoking the Maxwell stress tensor formalism. In essence, we show that the total electrodynamic pressure in such arrangements can be obtained in an effortless manner from initial excitation conditions, thus avoiding time-consuming simulations of the utterly complex multimode dynamics. To illustrate the validity of our results, we carry out numerical simulations in multimoded nonlinear optical structures supporting two polarization species and demonstrate excellent agreement with the Maxwell stress tensor method.

2.
Phys Rev Lett ; 131(19): 193802, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000401

RESUMEN

The theory of optical thermodynamics provides a comprehensive framework that enables a self-consistent description of the intricate dynamics of nonlinear multimoded photonic systems. This theory, among others, predicts a pressurelike intensive quantity (p[over ^]) that is conjugate to the system's total number of modes (M)-its corresponding extensive variable. Yet at this point, the nature of this intensive quantity is still nebulous. In this Letter, we elucidate the physical origin of the optical thermodynamic pressure and demonstrate its dual essence. In this context, we rigorously derive an expression that splits p[over ^] into two distinct components, a term that is explicitly tied to the electrodynamic radiation pressure and a second entropic part that is responsible for the entropy change. We utilize this result to establish a formalism that simplifies the quantification of radiation pressure under nonlinear equilibrium conditions, thus eliminating the need for a tedious evaluation of the Maxwell stress tensor. Our theoretical analysis is corroborated by numerical simulations carried out in highly multimoded nonlinear optical structures. These results may provide a novel way in predicting and controlling radiation pressure processes in a variety of nonlinear electromagnetic settings.

3.
Phys Rev Lett ; 128(21): 213901, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687426

RESUMEN

We develop a rigorous theoretical framework based on principles from statistical mechanics that allows one to predict the equilibrium response of classical non-Hermitian arrangements in the weakly nonlinear regime. In this respect, we demonstrate that a pseudo-Hermitian configuration can always be driven into thermal equilibrium when a proper nonlinear operator is paired with the linear Hamiltonian of the system. We show that, in this case, the system will thermodynamically settle into an irregular pattern that does not resemble any known statistical distribution. Interestingly, this stable equilibrium response is associated with a Rayleigh-Jeans law when viewed within an appropriately transformed space that displays unitary dynamics. By considering a non-Hermitian Su-Schrieffer-Heeger chain, our results indicate that the thermodynamic equilibrium will always favor the edge modes instead of the ground state, in stark contrast to conventional nonlinear Hermitian configurations. Moreover, non-Hermitian lattices are shown to exhibit unusually high heat capacities, potentially acting as optical heat reservoirs to other Hermitian systems, by employing only a small number of sites and low power levels.

4.
Phys Rev Lett ; 128(12): 123901, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35394297

RESUMEN

We show that the orbital angular momentum (OAM) of a light field can be thermalized in a nonlinear cylindrical multimode optical waveguide. We find that upon thermal equilibrium, the maximization of the optical entropy leads to a generalized Rayleigh-Jeans distribution that governs the power modal occupancies with respect to the discrete OAM charge numbers. This distribution is characterized by a temperature that is by nature different from that associated with the longitudinal electromagnetic momentum flow of the optical field. Counterintuitively and in contrast to previous results, we demonstrate that even under positive temperatures, the ground state of the fiber is not always the most populated in terms of power. Instead, because of OAM, the thermalization processes may favor higher-order modes. A new equation of state is derived along with an extended Euler equation resulting from the extensivity of the entropy itself. By monitoring the nonlinear interaction between two multimode optical wave fronts with opposite spins, we show that the exchange of angular momentum is dictated by the difference in OAM temperatures, in full accord with the second law of thermodynamics. The theoretical analysis presented here is corroborated by numerical simulations that take into account the complex nonlinear dynamics of hundreds of modes. Our results may pave the way toward high-power optical sources with controllable orbital angular momenta, and at a more fundamental level, they may open up opportunities in drawing parallels with other complex multimode nonlinear systems like rotating atomic clouds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA