Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 255: 119209, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38782336

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process is a promising wastewater treatment technology, but the slow microbial growth rate greatly hinders its practical application. Although high-level nitrogen removal and excellent biomass accumulation have been achieved in n-DAMO granule process, the formation mechanism of n-DAMO granules remains unresolved. To elucidate the role of functional microbes in granulation, this study attempted to cultivate granules dominated by n-DAMO microorganisms and granules coupling n-DAMO with anaerobic ammonium oxidation (Anammox). After long-term operation, dense granules were developed in the two systems where both n-DAMO archaea and n-DAMO bacteria were enriched, whereas granulation did not occur in the other system dominated by n-DAMO bacteria. Extracellular polymeric substances (EPS) measurement indicated the critical role of EPS production in the granulation of n-DAMO process. Metagenomic and metatranscriptomic analyses revealed that n-DAMO archaea and Anammox bacteria were active in EPS biosynthesis, while n-DAMO bacteria were inactive. Consequently, more EPS were produced in the systems containing n-DAMO archaea and Anammox bacteria, leading to the successful development of n-DAMO granules. Furthermore, EPS biosynthesis in n-DAMO systems is potentially regulated by acyl-homoserine lactones and c-di-GMP. These findings not only provide new insights into the mechanism of granule formation in n-DAMO systems, but also hint at potential strategies for management of the granule-based n-DAMO process.


Asunto(s)
Archaea , Bacterias , Oxidación-Reducción , Archaea/metabolismo , Archaea/genética , Anaerobiosis , Bacterias/metabolismo , Bacterias/genética , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitritos/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Reactores Biológicos/microbiología , Aguas Residuales/microbiología
2.
Environ Res ; 252(Pt 1): 118810, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552829

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process offers a promising solution for simultaneously achieving methane emissions reduction and efficient nitrogen removal in wastewater treatment. Although nitrogen removal at a practical rate has been achieved by n-DAMO biofilm process, the mechanisms of biofilm formation and nitrogen transformation remain to be elucidated. In this study, n-DAMO biofilms were successfully developed in the membrane aerated moving bed biofilm reactor (MAMBBR) and removed nitrate at a rate of 159 mg NO3--N L-1 d-1. The obvious increase in the content of extracellular polymeric substances (EPS) indicated that EPS production was important for biofilm development. n-DAMO microorganisms dominated the microbial community, and n-DAMO bacteria were the most abundant microorganisms. However, the expression of biosynthesis genes for proteins and polysaccharides encoded by n-DAMO archaea was significantly more active compared to other microorganisms, suggesting the central role of n-DAMO archaea in EPS production and biofilm formation. In addition to nitrate reduction, n-DAMO archaea were revealed to actively express dissimilatory nitrate reduction to ammonium and nitrogen fixation. The produced ammonium was putatively converted to dinitrogen gas through the joint function of n-DAMO archaea and n-DAMO bacteria. This study revealed the biofilm formation mechanism and nitrogen-transformation network in n-DAMO biofilm systems, shedding new light on promoting the application of n-DAMO process.


Asunto(s)
Biopelículas , Reactores Biológicos , Metano , Nitratos , Oxidación-Reducción , Biopelículas/crecimiento & desarrollo , Metano/metabolismo , Anaerobiosis , Nitratos/metabolismo , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Archaea/metabolismo , Archaea/genética , Archaea/fisiología , Bacterias/metabolismo , Bacterias/genética , Eliminación de Residuos Líquidos/métodos
3.
Clin Oral Implants Res ; 35(3): 258-267, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031528

RESUMEN

OBJECTIVES: This study aims at examining the correlation of intraosseous temperature change with drilling impulse data during osteotomy and establishing real-time temperature prediction models. MATERIALS AND METHODS: A combination of in vitro bovine rib model and Autonomous Dental Implant Robotic System (ADIR) was set up, in which intraosseous temperature and drilling impulse data were measured using an infrared camera and a six-axis force/torque sensor respectively. A total of 800 drills with different parameters (e.g., drill diameter, drill wear, drilling speed, and thickness of cortical bone) were experimented, along with an independent test set of 200 drills. Pearson correlation analysis was done for linear relationship. Four machining learning (ML) algorithms (e.g., support vector regression [SVR], ridge regression [RR], extreme gradient boosting [XGboost], and artificial neural network [ANN]) were run for building prediction models. RESULTS: By incorporating different parameters, it was found that lower drilling speed, smaller drill diameter, more severe wear, and thicker cortical bone were associated with higher intraosseous temperature changes and longer time exposure and were accompanied with alterations in drilling impulse data. Pearson correlation analysis further identified highly linear correlation between drilling impulse data and thermal changes. Finally, four ML prediction models were established, among which XGboost model showed the best performance with the minimum error measurements in test set. CONCLUSION: The proof-of-concept study highlighted close correlation of drilling impulse data with intraosseous temperature change during osteotomy. The ML prediction models may inspire future improvement on prevention of thermal bone injury and intelligent design of robot-assisted implant surgery.


Asunto(s)
Implantes Dentales , Procedimientos Quirúrgicos Robotizados , Robótica , Animales , Bovinos , Implantes Dentales/efectos adversos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Diseño de Equipo , Osteotomía/efectos adversos , Implantación Dental Endoósea/efectos adversos , Calor
4.
J Environ Manage ; 358: 120832, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599089

RESUMEN

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Asunto(s)
Biodegradación Ambiental , Larva , Microplásticos , Polietileno , Tenebrio , Animales , Tenebrio/metabolismo , Polietileno/metabolismo , Microplásticos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo
5.
J Prosthodont ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566576

RESUMEN

The purpose of this technical report is to demonstrate a fully digital workflow for designing and fabricating metal frameworks and removable partial dentures. After obtaining a digital cast of the dental arch with bilateral distal extension defect, computer-aided design software and 3D printing technology are used for the design and fabrication of the removable partial denture frameworks, denture teeth, and denture bases, instead of the traditional workflow. The assembly of the three components is facilitated through a meticulously structured framework. The technology, which prints metal frameworks, denture bases, and denture teeth through different processes with different materials, achieves full 3D printing technology for making removable partial dentures.

6.
J Org Chem ; 88(14): 10180-10189, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37410945

RESUMEN

The efficient synthesis of fluoroalkylated pyrazolo[1,5-c]quinazolines by reactions of 3-diazoindolin-2-ones with methyl ß-fluoroalkylpropionates has been achieved. This protocol affords two regioisomers of fluoroalkylated pyrazolo[1,5-c]quinazolines with excellent yields in total. The dipolarophilicity of methyl ß-fluoroalkylpropionates enhanced by perfluoroalkyl groups is crucial for the high efficiency of this [3 + 2] cycloaddition reaction.

7.
Environ Sci Technol ; 57(50): 20975-20991, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37931214

RESUMEN

Nitrate/nitrite-dependent anaerobic oxidation of methane (n-DAMO) is a recently discovered process, which provides a sustainable perspective for simultaneous nitrogen removal and greenhouse gas emission (GHG) mitigation by using methane as an electron donor for denitrification. However, the engineering roadmap of the n-DAMO process is still unclear. This work constitutes a state-of-the-art review on the classical and most recently discovered metabolic mechanisms of the n-DAMO process. The versatile combinations of the n-DAMO process with nitrification, nitritation, and partial nitritation for nitrogen removal are also clearly presented and discussed. Additionally, the recent advances in bioreactor development are systematically reviewed and evaluated comprehensively in terms of methane supply, biomass retention, membrane requirement, startup time, reactor performance, and limitations. The key issues including enrichment and operation strategy for the scaling up of n-DAMO-based processes are also critically addressed. Moreover, the challenges inherent to implementing the n-DAMO process in practical applications, including application scenario recognition, GHG emission mitigation, and operation under realistic conditions, are highlighted. Finally, prospects as well as opportunities for future research are proposed. Overall, this review provides a roadmap for potential applications and further development of the n-DAMO process in the field of wastewater treatment.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/metabolismo , Nitritos/metabolismo , Nitrificación , Anaerobiosis , Metano , Desnitrificación , Compuestos de Amonio/metabolismo , Oxidación-Reducción , Reactores Biológicos , Nitrógeno/metabolismo
8.
Environ Res ; 223: 115409, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746203

RESUMEN

An important way to promote the environmental industry's goal of carbon reduction is to promote the recycling of resources. Membrane separation technology has unique advantages in resource recovery and advanced treatment of industrial wastewater. However, the great promise of traditional organic membrane is hampered by challenges associated with organic solvent tolerance, lack of oxidation resistance, and serious membrane fouling control. Moreover, the high concentrations of organic matter and inorganic salts in the membrane filtration concentrate also hinder the wider application of the membrane separation technology. The emerging cost-effective graphene oxide (GO)-based membrane with excellent resistance to organic solvents and oxidants, more hydrophilicity, lower membrane fouling, better separation performance has been expected to contribute more in industrial wastewater treatment. Herein, we provide comprehensive insights into the preparation and characteristic of GO membranes, as well as current research status and problems related to its future application in industrial wastewater treatment. Finally, concluding remarks and future perspectives have been deduced and recommended for the GO membrane separation technology application for industrial wastewater treatment, which leads to realizing sustainable wastewater recycling and a nearly "zero discharge" water treatment process.


Asunto(s)
Grafito , Purificación del Agua , Aguas Residuales , Membranas Artificiales
9.
Environ Res ; 224: 115513, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801232

RESUMEN

One of the most prevalent heavy metals found in rural sewage is Zn(II), while its effect on simultaneous nitrification, denitrification and phosphorus removal (SNDPR) remains unclear. In this work, the responses of SNDPR performance to long-term Zn(II) stress were investigated in a cross-flow honeycomb bionic carrier biofilm system. The results indicated that Zn(II) stress at 1 and 5 mg L-1 could increase nitrogen removal. Maximum ammonia nitrogen, total nitrogen, and phosphorus removal efficiencies of up to 88.54%, 83.19%, and 83.65% were obtained at Zn(II) concentration of 5 mg L-1. The functional genes, such as archaeal amoA, bacterial amoA, NarG, NirS, NapA, and NirK, also reached the highest value at 5 mg L-1 Zn(II), with the absolute abundances of 7.73 × 105, 1.57 × 106, 6.68 × 108, 1.05 × 109, 1.79 × 108, and 2.09 × 108 copies·g-1 dry weight, respectively. The neutral community model demonstrated that deterministic selection was responsible for the system's microbial community assembly. Additionally, response regimes with extracellular polymeric substances and cooperation among microorganisms facilitated the stability of the reactor effluent. Overall, the findings of this paper contribute to improving the efficiency of wastewater treatment.


Asunto(s)
Microbiota , Nitrificación , Desnitrificación , Fósforo , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Nitrógeno , Rendimiento Físico Funcional , Zinc , Eliminación de Residuos Líquidos/métodos
10.
Environ Res ; 221: 115218, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608761

RESUMEN

The regulation of bacterial quorum sensing (QS) has been used to inhibit biofouling in wastewater treatment plants and the formation of biofilms. In contrast to traditional QS regulation strategies, this study aimed to obstruct the transmembrane transport process of QS signals to decrease their extracellular accumulation. Three phytochemicals, astragaloside IV, eugenol, and baicalin were selected, their effects on biofilm formation by Pseudomonas aeruginosa PA14 were studied, and the mechanisms determined. The inhibition efficiency of biofilm formation by 50 mg/L astragaloside IV, 1 mg/L eugenol, and 1 mg/L baicalin were 37%, 26%, and 26%, respectively. Confocal laser scanning microscopy and analysis of extracellular polymeric substances indicated that the three inhibitors affected the structure and composition of the biofilms. Furthermore, bacterial motility and a variety of QS-related virulence factors were suppressed by the inhibitor treatment due to changes in bacterial QS. Notably, the three inhibitors all decreased the extracellular concentration of the QS signaling molecule 3-oxo-C12-homoseine lactone by affecting the function of efflux pump MexAB-OprM. This indirectly interfered with the bacterial QS system and thus inhibited biofilm formation. In conclusion, this study revealed the inhibitory effects and inhibition mechanism of three phytochemicals on efflux pump and QS of P. aeruginosa and realized the inhibition on biofilm formation. We update the efflux pump inhibitor library and provide a new way for biofilm contamination control.


Asunto(s)
Percepción de Quorum , Saponinas , Eugenol/farmacología , Biopelículas , Saponinas/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas
11.
Environ Res ; 220: 115184, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586714

RESUMEN

As a promising technology, the combination of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) with Anammox offers a solution to achieve effective and sustainable wastewater treatment. However, this sustainable process faces challenges to accumulate sufficient biomass for reaching practical nitrogen removal performance. This study developed an innovative membrane aerated moving bed biofilm reactor (MAMBBR), which supported sufficient methane supply and excellent biofilm attachment, for cultivating biofilms coupling n-DAMO with Anammox. Biofilms were developed rapidly on the polyurethane foam with the supply of ammonium and nitrate, achieving the bioreactor performance of 275 g N m-3 d-1 within 102 days. After the preservation at -20 °C for 8 months, the biofilm was successfully reactivated and achieved 315 g N m-3 d-1 after 188 days. After reactivation, MAMBBR was applied to treat synthetic sidestream wastewater. Up to 99.9% of total nitrogen was removed with the bioreactor performance of 4.0 kg N m-3 d-1. Microbial community analysis and mass balance calculation demonstrated that n-DAMO microorganisms and Anammox bacteria collectively contributed to nitrogen removal in MAMBBR. The MAMBBR developed in this study provides an ideal system of integrating n-DAMO with Anammox for sustainable wastewater treatment.


Asunto(s)
Compuestos de Amonio , Nitratos , Desnitrificación , Metano , Nitrógeno , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Reactores Biológicos/microbiología , Oxidación-Reducción , Biopelículas
12.
J Prosthet Dent ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37604754

RESUMEN

This clinical report describes a fully digital workflow for replicating removable partial dentures (RPDs). The artificial teeth and denture base of existing dentures were duplicated and applied to new dentures with a redesigned framework. After the components of RPDs had been separated from the scan data of the existing dentures, they were fabricated using 3-dimensional printing and assembled to create a new denture.

13.
J Prosthet Dent ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37993320

RESUMEN

The digital workflow to fabricate an integrated hollow bulb obturator prosthesis with a metal framework for a patient with soft palate defect is described. The framework was digitally designed with an open lattice denture base connector to facilitate the assembly of the hollow bulb obturator and printed with titanium. A functional impression of the palatopharyngeal area was made, and an integrated 3-dimensional (3D) cast was obtained by aligning the data of the functional impression to the preliminary intraoral scan data. The hollow bulb obturator and a palatal cover were designed based on the integrated 3D cast and the framework design data and printed with light-polymerizing denture base resin. The printed framework, obturator, and palatal cover were assembled and bonded without a physical cast, and the definitive prosthesis exhibited good fit, retention, and stability.

14.
J Antimicrob Chemother ; 77(10): 2840-2849, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35848795

RESUMEN

OBJECTIVES: The rapid development of drug-resistant bacteria, especially MRSA, poses severe threats to global public health. Adoption of antibiotic adjuvants has proved to be one of the efficient ways to solve such a crisis. Platensimycin and surfactin were comprehensively studied to combat prevalent MRSA skin infection. METHODS: MICs of platensimycin, surfactin or their combinations were determined by resazurin assay, while the corresponding MBCs were determined by chequerboard assay. Growth inhibition curves and biofilm inhibition were determined by OD measurements. Membrane permeability analysis was conducted by propidium iodide staining, and morphological characterizations were performed by scanning electron microscopy. Finally, the therapeutic effects on MRSA skin infections were evaluated in scald-model mice. RESULTS: The in vitro assays indicated that surfactin could significantly improve the antibacterial performance of platensimycin against MRSA, especially the bactericidal activity. Subsequent mechanistic studies revealed that surfactin not only interfered with the biofilm formation of MRSA, but also disturbed their cell membranes to enhance membrane permeability, and therefore synergistically ameliorated MRSA cellular uptake of platensimycin. Further in vivo assessment validated the synergistic effect of surfactin on platensimycin and the resultant enhancement of therapeutical efficacy in MRSA skin-infected mice. CONCLUSIONS: The combination of effective and biosafe surfactin and platensimycin could be a promising and efficient treatment for MRSA skin infection, which could provide a feasible solution to combat the major global health threats caused by MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Enfermedades Cutáneas Infecciosas , Adamantano , Aminobenzoatos , Anilidas , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Celulitis (Flemón)/tratamiento farmacológico , Lipopéptidos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Propidio/metabolismo , Propidio/farmacología
15.
Environ Sci Technol ; 56(19): 14048-14058, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36074547

RESUMEN

Current research has widely applied heteroatom doping for the promotion of catalyst activity in peroxymonosulfate (PMS) systems; however, the relationship between heteroatom doping and stimulated activation mechanism transformation is not fully understood. Herein, we introduce nitrogen and sulfur doping into a Co@rGO material for PMS activation to degrade tetracycline (TC) and systematically investigate how heteroatom doping transformed the activation mechanism of the original Co@rGO/PMS system. N was homogeneously inserted into the reduced graphene oxide (rGO) matrix of Co@rGO, inducing a significant increase in the degradation efficiency without affecting the activation mechanism transformation. Additionally, S doping converted Co3O4 to Co4S3 in Co@rGO and transformed the cooperative oxidation pathway into a single non-radical pathway with stronger intensity, which led to a higher stability against environmental interferences. Notably, based on density functional theory (DFT) calculations, we demonstrated that Co4S3 had a higher energy barrier for PMS adsorption and cleavage than Co3O4, and therefore, the radical pathway was not easily stimulated by Co4S3. Overall, this study not only illustrated the improvement due to the heteroatom doping of Co@rGO for TC degradation in a PMS system but also bridged the knowledge gap between the catalyst structure and degradation performance through activation mechanism transformation drawn from theoretical and experimental analyses.


Asunto(s)
Nitrógeno , Peróxidos , Antibacterianos , Cobalto , Grafito , Nitrógeno/química , Óxidos , Peróxidos/química , Azufre , Tetraciclina
16.
Environ Res ; 205: 112541, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915032

RESUMEN

Chemical absorption-biological reduction (CABR) process is an attractive method for NOX removal and Fe(II)EDTA regeneration is important to sustain high NOX removal. In this study a sustainable and eco-friendly sulfur cycling-mediated Fe(II)EDTA regeneration method was incorporated in the integrated biological flue gas desulfurization (FGD)-CABR system. Here, we investigated the NOX and SO2 removal efficiency of the system under three different flue gas flows (100 mL/min, 500 mL/min, and 1000 mL/min) and evaluated the feasibility of chemical Fe(III)EDTA reduction by sulfide in series of batch tests. Our results showed that complete SO2 removal was achieved at all the tested scenarios with sulfide, thiosulfate and S0 accumulation in the solution. Meanwhile, the total removal efficiency of NOX achieved ∼100% in the system, of which 3.2%-23.3% was removed in spray scrubber and 76.7%-96.5% in EGSB reactor along with no N2O emission. The optimal pH and S2-/Fe(III)EDTA for Fe(II)EDTA regeneration and S0 recovery was 8.0 and 1:2. The microbial community analysis results showed that the cooperation of heterotrophic denitrifier (Saprospiraceae_uncultured and Dechloromonas) and iron-reducing bacteria (Klebsiella and Petrimonas) in EGSB reactor and sulfide-oxidizing, nitrate-reducing bacteria (Azoarcus and Pseudarcobacter) in spray scrubber contributed to the efficient removal of NOX in flue gas.


Asunto(s)
Óxidos de Nitrógeno , Azufre , Bacterias , Ácido Edético , Óxido Nítrico , Oxidación-Reducción , Dióxido de Azufre
17.
Environ Res ; 206: 112630, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973940

RESUMEN

With the acceleration of urbanization, the proportion of surface imperviousness is increasing continuously in cities, resulting in frequent waterlogging disasters. In this context, storm water management, based on the low-impact development (LID) concept, offers an effective measure for the management of urban storm waters. First, the storm water management model (SWMM) was built for a typical cold climate city (Changchun) in China. Next, the two-stage calibrated model was employed to explore the surface runoff and storm sewer control effects of four LID combination plans. Finally, these plans were put through a "cost-benefit" evaluation through an analytic hierarchy process. According to the results, after using four LID plans, the reduction rates of peak runoff exceeded 40% and the problem of overflow load of the storm sewage was significantly mitigated. The infiltration-oriented Plan I proved to be the optimal plan, with the lowest proportions of the overflow nodes and full-load pipe sections in each return period, as well as with maximum overall performance. This study offers technical and conformed methodological support to cold cities for the prevention and control of waterlogging disasters and recycling of rainwater resources.


Asunto(s)
Lluvia , Movimientos del Agua , China , Ciudades , Clima Frío , Urbanización
18.
J Org Chem ; 86(21): 15717-15725, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34644085

RESUMEN

Employing the methyl ß-perfluoroalkylpropionate as the Michael acceptor, an efficient approach for the synthesis of perfluoroalkylated pyrrolidine-fused coumarins has been achieved. A tandem reaction involving [3 + 2] cycloaddition and intramolecular transesterification was proposed for the mechanism. The enhanced electrophilicity resulting from the strong electron-withdrawing ability of the perfluoroalkyl group was crucial for this tandem reaction.


Asunto(s)
Cumarinas , Fluorocarburos , Ciclización , Estructura Molecular , Pirrolidinas
19.
Environ Sci Technol ; 55(24): 16586-16596, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34723492

RESUMEN

Mainstream anaerobic wastewater treatment has received increasing attention for the recovery of methane-rich biogas from biodegradable organics, but subsequent mainstream nitrogen and dissolved methane removal at low temperatures remains a critical challenge in practical applications. In this study, granular sludge coupling n-DAMO with Anammox was employed for mainstream nitrogen removal, and the dissolved methane removal potential of granular sludge at low temperatures was investigated. A stable nitrogen removal rate (0.94 kg N m-3 d-1 at 20 °C) was achieved with a high-level effluent quality (<3.0 mg TN L-1) in a lab-scale membrane granular sludge reactor (MGSR). With decreasing temperature, the nitrogen removal rate dropped to 0.55 kg N m-3 d-1 at 10 °C, while the effluent concentration remained <1.0 mg TN L-1. The granular sludge with an average diameter of 1.8 mm proved to retain sufficient biomass (27 g VSS L-1), which enabled n-DAMO and Anammox activity at a hydraulic retention time as low as 2.16 h even at 10 °C. 16S rRNA gene sequencing and scanning electron microscopy revealed a stable community composition and compact structure of granular sludge during long-term operation. Energy recovery could be maximized by recovering most of the dissolved methane in mainstream anaerobic effluent, as only a small amount of dissolved methane was capable of supporting denitrifying methanotrophs in granular sludge, which enabled high-level nitrogen removal.


Asunto(s)
Compuestos de Amonio , Metano , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Temperatura
20.
Environ Sci Technol ; 55(2): 1197-1208, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33185425

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) is critical for mitigating methane emission and returning reactive nitrogen to the atmosphere. The genomes of n-DAMO archaea show that they have the potential to couple anaerobic oxidation of methane to dissimilatory nitrate reduction to ammonium (DNRA). However, physiological details of DNRA for n-DAMO archaea were not reported yet. This work demonstrated n-DAMO archaea coupling the anaerobic oxidation of methane to DNRA, which fueled Anammox in a methane-fed membrane biofilm reactor with nitrate as only electron acceptor. Microelectrode analysis revealed that ammonium accumulated where nitrite built up in the biofilm. Ammonium production and significant upregulation of gene expression for DNRA were detected in suspended n-DAMO culture with nitrite exposure, indicating that nitrite triggered DNRA by n-DAMO archaea. 15N-labeling batch experiments revealed that n-DAMO archaea produced ammonium from nitrate rather than from external nitrite. Localized gradients of nitrite produced by n-DAMO archaea in biofilms induced ammonium production via the DNRA process, which promoted nitrite consumption by Anammox bacteria and in turn helped n-DAMO archaea resist stress from nitrite. As biofilms predominate in various ecosystems, anaerobic oxidation of methane coupled with DNRA could be an important link between the global carbon and nitrogen cycles that should be investigated in future research.


Asunto(s)
Compuestos de Amonio , Anaerobiosis , Reactores Biológicos , Desnitrificación , Ecosistema , Metano , Nitratos , Nitritos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA