Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36616339

RESUMEN

Zinc (Zn) is a fundamental micronutrient for plants' metabolism, but in high concentrations, it is toxic. In this study, we investigated the physiological response of white mustard (Sinapis alba L. cv. Belgia) plants to the Zn excess concentrations (50, 100, and 150 mg kg-1) in the substrate. The results showed that sand Zn concentration of 50 mg kg-1 did not affect the physiological parameters of plants, despite to the high Zn accumulation in shoots. The growth, biomass accumulation, photosynthesis rate, and pigment amount were inhibited at Zn concentrations of 100 and 150 mg kg-1 in substrate. A slight increase in malondialdehyde (MDA) was also observed at zinc concentrations (100 and 150 mg kg-1) without changes in membrane permeability, which is partly connectedtoan increase in the proline content. The results suggested that white mustard tolerates Zn excess impact. S. alba is able to grow on Zn-contaminated substrates along with significant Zn accumulation in shoots, which supports its high potential for phytoremediation of Zn-polluted agricultural soils. It is also possible to propose the following recycling of white mustard plants for Zn fortification feedstuff.

2.
Biomolecules ; 13(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37189330

RESUMEN

The effect of methyl jasmonate (MJ) (1 µM) on wheat (Triticum aestivum L. cv. Moskovskaya 39), seedlings and the fatty acid (FA) content of leaves under optimal and cadmium (Cd) (100 µM) stress conditions wasinvestigated. Height and biomass accumulation was studied traditionally; the netphotosynthesis rate (Pn) was studied using a photosynthesis system, FAs'profile-GS-MS. No effect on the height and Pn rate of the MJ pre-treatment wheat at optimum growth conditions was found. MJ pre-treatment led to a decrease in the total amount of saturated (about 11%) and unsaturated (about 17%) identified FAs, except α-linoleic FA (ALA), which is probably associated with its involvement in energy-dependent processes. Under Cd impact, the MJ-treated plants had a higher biomass accumulation and Pn rate compared to untreated seedlings. Both MJ and Cd caused stress-induced elevation of palmitic acid (PA) versus an absence of myristic acid (MA), which is used for elongation. It is suggested that PA participates in alternative adaptation mechanisms (not only as a constituent of the lipid bilayer of biomembrane) of plants under stress. Overall, the dynamics of FAs showed an increase in the saturated FA that is important in the packing of the biomembrane. It is supposed that the positive effect of MJ is associated with lower Cd content in plants and a higher ALA content in leaves.


Asunto(s)
Cadmio , Triticum , Cadmio/toxicidad , Ácidos Grasos/farmacología , Oxilipinas/farmacología , Plantones
3.
Plants (Basel) ; 10(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34371628

RESUMEN

Methyl jasmonate (MJ) is an important plant growth regulator that plays a key role in tolerance to biotic and abiotic stresses. In this research, the effects of exogenous MJ on cold tolerance, photosynthesis, activity and gene expression of antioxidant enzymes, proline accumulation, and expression of cold-regulated (COR) genes in wheat seedlings under low temperature (4 °C) were investigated. Exogenous MJ treatment (1 µM) promoted wheat cold tolerance before and during cold exposure. Low temperature significantly decreased photosynthetic parameters, whereas MJ application led to their partial recovery under cold exposure. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels increased in response to low temperature, and this was counteracted by MJ application. Exogenous MJ significantly enhanced the activities of antioxidant enzymes and upregulated the expression of MnSOD and CAT during cold exposure. MJ application also led to enhanced proline content before 4 °C exposure, whereas the P5CS gene expression was upregulated by MJ's presence at both normal (22 °C) and low (4 °C) temperatures. It was also shown that MJ tended to upregulate the expression of the COR genes WCS19 and WCS120 genes. We conclude that exogenous MJ can alleviate the negative effect of cold stress thus increasing wheat cold tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA