Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(18): e2106825, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35253990

RESUMEN

Sintering is a very important process in materials science and technological applications. Despite breakthroughs in achieving optimized piezoelectric properties, fundamentals of K0.5 Na0.5 NbO3 (KNN) sintering are not yet fully understood, facing densification versus grain growth competition. At present, microscale events during KNN sintering under reducing atmospheres are real-time monitored using a High Temperature-Environmental Scanning Electron Microscope. A two contacting KNN particles model satisfying the Kingery and Berg's bulk diffusion model is reported. Dynamic events like individual grain growth and grain elimination process are explored through a postanalysis of recorded image series. The diffusion coefficient for oxygen vacancies of 10-8 cm2 s-1 and average boundary mobility of 10-9 cm4 J-1 s-1 are reported for the KNN ceramics. Moreover, the local pore shrinkage is consistent with the Kingery and François's concept of pore stability except that pore curvatures are not all concave, convex or flat due to anisotropic grain-boundary energies. The global grain growth kinetics are described using parabolic and/or cubic laws. The effect of atmospheres and microstructure evolution on the intrinsic and extrinsic contributions to the dielectric response using Rayleigh's law is also explored. These results bring a new breath for KNN sintering studies in order to adapt the sintering process.

2.
Small ; 18(14): e2107054, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35174974

RESUMEN

Miniaturized electronics suffer from a lack of energy autonomy. In that context, the fabrication of lithium-ion solid-state microbatteries with high performance is mandatory for powering the next generation of portable electronic devices. Here, the fabrication of a thin film positive electrode for 3D Li-ion microbatteries made by the atomic layer deposition (ALD) method and in situ lithiation step is demonstrated. The 3D electrodes based on spinel LiMn2 O4 films operate at high working potential (4.1 V vs Li/Li+ ) and are capable of delivering a remarkable surface capacity (≈180 µAh cm-2 ) at low C-rate while maintaining more than 40 µAh cm-2 at C/2 (time constant = 2 h). Both the thickness of the electrode material and the 3D gain of the template are carefully tuned to maximize the electrode performance. Advanced characterization techniques such as transmission electron and X-ray transmission microscopies are proposed as perfect tools to study the conformality of the deposited films and the interfaces between each layer: no interdiffusion or segregation are observed. This work represents a major issue towards the fabrication of 3D-lithiated electrode by ALD-without any prelithiation step by electrochemical technique-making it an attractive solution for the fabrication of 3D Li-ion solid-state microbatteries with semiconductor processing methods.

3.
Small ; 16(33): e2002855, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32656960

RESUMEN

In nanosized FeWO4 electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. In order to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy is successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments are obtained in real time upon cycling the electrode, which allows investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L3 -edge measurements point out the involvement of the Fe3+ /Fe2+ redox couple in the charge storage while W6+ acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO4 . Beside these valuable insights toward the full description of the charge storage mechanism in FeWO4 , this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive materials.

4.
Chemphyschem ; 21(24): 2634-2643, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33078874

RESUMEN

Silver cations were introduced in nanosized BEA-type zeolite containing organic template by ion-exchange followed by chemical reduction towards preparation of photoactive materials (Ag0 -BEA). The stabilization of highly dispersed Ag0 nanoparticles with a size of 1-2 nm in the BEA zeolite was revealed. The transient optical response of the Ag-BEA samples upon photoexcitation at 400 nm was studied by femtosecond absorption. The photodynamic of the hot electrons was found to depend on the sample preparation. The lifetime of the hot electrons in the Ag-BEA samples containing small Ag nanoparticles (1-2 nm) is significantly shortened in comparison to bear Ag nanoparticles with a size of 10 nm. While for the larger Ag nanoparticles, the energy absorbed in the conduction band is decaying by electron-phonon coupling into the metal lattice, the high surface-to-volume ratio of the small Ag nanoparticles favors the dissipation of the energy of the hot electrons from the metal nanoparticles (Ag0 ) towards the zeolitic micro-environment. This finding is encouraging for further applications of Ag-containing zeolites in photocatalysis and plasmonic chemistry.

5.
Nat Mater ; 16(10): 1010-1015, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28759033

RESUMEN

The synthesis of nanostructured zeolites enables modification of catalytically relevant properties such as effective surface area and diffusion path length. Nanostructured zeolites may be synthesized either in alkaline media, and so contain significant numbers of hydrophilic silanol groups, or in expensive and harmful fluoride-containing media. Here, we report and characterize, using a combination of experimental and theoretical techniques, the one-pot synthesis of silanol-free nanosized MFI-type zeolites by introducing atomically dispersed tungsten; this prevents silanol group occurrence by forming flexible W-O-Si bridges. These W-O-Si bonds are more stable than Si-O-Si in the all-silica MFI zeolite. Tungsten incorporation in nanosized MFI crystals also modifies other properties such as structural features, hydrophobicity and Lewis acidity. The effect of these is illustrated on the catalytic epoxidation of styrene and separation of CO2 and NO2. Silanol-free nanosized W-MFI zeolites open new perspectives for catalytic and separation applications.

6.
Nat Mater ; 14(4): 447-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25559425

RESUMEN

Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm(3) g(-1)) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

7.
Langmuir ; 30(21): 6250-6, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24810992

RESUMEN

A facile and rapid photochemical method for preparing supported silver nanoparticles (Ag-NPs) in a suspension of faujasite type (FAU) zeolite nanocrystals is described. Silver cations are introduced by ion exchange into the zeolite and subsequently irradiated with a Xe-Hg lamp (200 W) in the presence of a photoactive reducing agent (2-hydroxy-2-methylpropiophenone). UV-vis characterization indicates that irradiation time and intensity (I0) influence significantly the amount of silver cations reduced. The full reduction of silver cations takes place after 60 s of a polychromatic irradiation, and a plasmon band of Ag-NPs appears at 380 nm. Transmission electron microscopy combined with theoretical calculation of the plasmon absorbance band using Mie theory shows that the Ag-NPs, stabilized in the micropores and on the external surface of the FAU zeolite nanocrystals, have an almost spheroidal shape with diameters of 0.75 and 1.12 nm, respectively. Ag-NPs, with a homogeneous distribution of size and morphology, embedded in a suspension of FAU zeolites are very stable (∼8 months), even without stabilizers or capping agents.

8.
Colloids Surf B Biointerfaces ; 218: 112732, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932560

RESUMEN

While the use of nanozeolites for cancer treatment holds a great promise, it also requires a better understanding of the interaction between the zeolite nanoparticles and cancer cells and notably their internalization and biodistribution. It is particularly important in situation of hypoxia, a very common situations in aggressive cancers, which may change the energetic processes required for cellular uptake. Herein, we studied, in vitro, the kinetics of the internalization process and the intracellular localization of nanosized zeolite X (FAU-X) into glioblastoma cells. In normoxic conditions, scanning electron microscopy (SEM) showed a rapid cell membrane adhesion of zeolite nanoparticles (< 5 min following application in the cell medium), occurring before an energy-dependent uptake which appeared between 1 h and 4 h. Additionally, transmission electron microscopy (TEM) and flow cytometry analyzes, confirmed that the zeolite nanoparticles accumulate over time into the cytoplasm and were mostly located into vesicles visible at least up to 6 days. Interestingly, the uptake of zeolite nanoparticles was found to be dependent on oxygen concentration, i.e. an increase in internalization in severe hypoxia (0.2 % of O2) was observed. No toxicity of zeolite FAU-X nanoparticles was detected after 24 h and 72 h. The results clearly showed that the nanosized zeolites crystals were rapidly internalized via energy-requiring mechanism by cancer cells and even more in the hypoxic conditions. Once the zeolite nanoparticles were internalized into cells, they appeared to be safe and stable and therefore, they are envisioned to be used as carrier of various compounds to target cancer cells.


Asunto(s)
Glioblastoma , Zeolitas , Humanos , Hipoxia , Oxígeno , Distribución Tisular , Zeolitas/química , Zeolitas/farmacología
9.
ACS Appl Mater Interfaces ; 13(13): 15761-15773, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33765380

RESUMEN

LiNi0.5Mn1.5O4 (LNMO) is a promising 5V-class electrode for Li-ion batteries but suffers from manganese dissolution and electrolyte decomposition owing to the high working potential. An attractive solution to stabilize the surface chemistry consists in mastering the interface between the LNMO electrode and the liquid electrolyte with a surface protective layer made from the powerful surface deposition method. Here, we show that a 7400 nm thick sputtered LNMO film coated with a nanometer-thick lithium-ion-conductive Li3PO4 layer was deposited by the atomic layer deposition method. We demonstrate that this "material model system" can deliver a remarkable surface capacity (∼0.4 mAh cm-2 at 1C) and exhibits improved cycling lifetime (×650%) compared to the nonprotected electrode. Nevertheless, we observe that mechanical failure occurs within the LNMO and Li3PO4 films when long-term cycling is performed. This in-depth study gives new insights regarding the mechanical degradation of LNMO electrodes upon charge/discharge cycling and reveals for the first time that the surface protective layer made from the ALD method is not sufficient for long-term stability applications.

10.
Chemistry ; 14(3): 794-805, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18081125

RESUMEN

The knowledge of the structure of the real solids is required for achieving the desired architectures in the research of new materials and/or optimizing the relationships between structure and properties. Understanding complex oxides needs accurate characterization at different length scales and the combined application of all solid-state techniques. Deciphering the relationships between all this information provides codes that allow the identification of the different structural levels, their roles and the way they interact. These step-by-step routes are illustrated through two basic mechanisms of solid-state chemistry: to determine the building units of one complex oxide in order to predict the existence of other arrangements on the one hand and to correlate complex ordering phenomena, such as those involving charges, orbitals and spins of manganese atoms in perovskite-type manganites on the other hand.

11.
Inorg Chem ; 42(5): 1734-8, 2003 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-12611546

RESUMEN

The novel ternary reduced molybdenum oxide Mn(approximately)(2.4)Mo(6)O(9) has been synthesized by solid-state reaction at 1400 degrees C for 96 h in sealed molybdenum crucibles. Electron diffraction studies showed that Mn(approximately)(2.4)Mo(6)O(9) presents a complex crystal structure with a 3d incommensurate modulation. The average crystal structure was determined on a single-crystal by X-ray diffraction in the orthorhombic space group Pnma with the following lattice parameters: a = 16.4824(2) A, b = 2.8273(2) A, c = 17.3283(2) A, Z = 4. The Mo network consists of empty twin chains of trans-edge-sharing octahedra that occur for the first time in a solid-state compound. The Mo-Mo distances within the chains range from 2.62 to 2.92 A, and the Mo-O distances from 1.99 to 2.17 A as usually observed in the reduced molybdenum oxides. Single-crystal resistivity measurements show that Mn(approximately)(2.4)Mo(6)O(9) is metallic between 4.2 and 300 K. The magnetic susceptibility data indicate paramagnetic behavior due to the Mn(2+) moment at high temperatures with a weak ferromagnetic behavior below 80 K.

12.
Nat Mater ; 3(4): 269-73, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15085852

RESUMEN

Tetrahedral oxides, like silicates and aluminates, have attracted great interest due to their potential for numerous applications in various fields ranging from catalysis, ion exchange and molecular sieves, to thermo- and photoluminescence. In spite of their tetrahedral character, no effort has been made to date for establishing structural relationships between these tetrahedral oxides with different forms of carbon, for example, fullerenes. Here, we report for the first time an oxide that exhibits a three-dimensional framework of AlO4 tetrahedra forming huge 'Al84' spheres, similar to those of the D2d isomer of the C84 fullerenes. These Al84 spheres, displayed in a face-centred-cubic lattice, are easily identified by high-resolution electron microscopy. We also show that this Sr33Bi24+delta Al48O141+3 delta/2 aluminate exhibits an onion-skin-like subnanostructure of its Bi/Sr/O species located inside the Al84 spheres. The role of the original pseudo-spheric anion [Bi16O52-n empty square box n]-with n vacancies (empty square box)-in the stabilization of such a structure is discussed. This structure seems to be promising for the generation of a large family of fullerene-type (fullerenoid) oxides with various properties.


Asunto(s)
Fulerenos/química , Oxígeno/química , Aluminio/química , Óxido de Aluminio/química , Aniones , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA