RESUMEN
The seventh EMBO meeting on the Molecular and Cellular Basis of Regeneration and Tissue Repair took place in Valletta, Malta, in September 2018. Researchers from all over the world gathered together with the aim of sharing the latest advances in wound healing, repair and regeneration. The meeting covered a wide range of regeneration models and tissues, identification of regulatory genes and signals, and striking advances toward regenerative therapies. Here, we report some of the exciting topics discussed during this conference, highlighting important discoveries in regeneration and the perspectives for regenerative medicine.
Asunto(s)
Medicina Regenerativa/métodos , Animales , Humanos , Regeneración/fisiología , Cicatrización de Heridas/fisiologíaRESUMEN
In multicellular organisms, cell type diversity and fate depend on specific sets of transcript isoforms generated by post-transcriptional RNA processing. Here, we used Schmidtea mediterranea, a flatworm with extraordinary regenerative abilities and a large pool of adult stem cells, as an in vivo model to study the role of Uridyl-rich small nuclear RNAs (UsnRNAs), which participate in multiple RNA processing reactions including splicing, in stem cell regulation. We characterized the planarian UsnRNA repertoire, identified stem cell-enriched variants and obtained strong evidence for an increased rate of UsnRNA 3'-processing in stem cells compared to their differentiated counterparts. Consistently, components of the Integrator complex showed stem cell-enriched expression and their depletion by RNAi disrupted UsnRNA processing resulting in global changes of splicing patterns and reduced processing of histone mRNAs. Interestingly, loss of Integrator complex function disrupted both stem cell maintenance and regeneration of tissues. Our data show that the function of the Integrator complex in UsnRNA 3'-processing is conserved in planarians and essential for maintaining their stem cell pool. We propose that cell type-specific modulation of UsnRNA composition and maturation contributes to in vivo cell fate choices, such as stem cell self-renewal in planarians.
Asunto(s)
Células Madre Adultas/fisiología , Planarias/genética , Planarias/fisiología , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Regeneración/genética , Regeneración/fisiología , Células Madre Adultas/citología , Animales , Secuencia de Bases , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Autorrenovación de las Células/genética , Autorrenovación de las Células/fisiología , Modelos Biológicos , Conformación de Ácido Nucleico , Planarias/citología , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Empalme del ARN , ARN de Helminto/química , Homología de Secuencia de Ácido NucleicoRESUMEN
Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating ß1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Integrina beta1/fisiología , Neurogénesis/fisiología , Planarias/fisiología , Regeneración/fisiología , Animales , Tipificación del Cuerpo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Hibridación in Situ , Neuronas/citología , Filogenia , Interferencia de ARN , Transducción de Señal , Células Madre/citologíaRESUMEN
Sarcopenia, the age-related decline in muscle function, places a considerable burden on health-care systems. While the stereotypic hallmarks of sarcopenia are well characterized, their contribution to muscle wasting remains elusive, which is partly due to the limited availability of animal models. Here, we have performed cellular and molecular characterization of skeletal muscle from the African killifish-an extremely short-lived vertebrate-revealing that while many characteristics deteriorate with increasing age, supporting the use of killifish as a model for sarcopenia research, some features surprisingly reverse to an "early-life" state in the extremely old stages. This suggests that in extremely old animals, there may be mechanisms that prevent further deterioration of skeletal muscle, contributing to an extension of life span. In line with this, we report a reduction in mortality rates in extremely old killifish. To identify mechanisms for this phenomenon, we used a systems metabolomics approach, which revealed that during aging there is a striking depletion of triglycerides, mimicking a state of calorie restriction. This results in the activation of mitohormesis, increasing Sirt1 levels, which improves lipid metabolism and maintains nutrient homeostasis in extremely old animals. Pharmacological induction of Sirt1 in aged animals was sufficient to induce a late life-like metabolic profile, supporting its role in life span extension in vertebrate populations that are naturally long-lived. Collectively, our results demonstrate that killifish are not only a novel model to study the biological processes that govern sarcopenia, but they also provide a unique vertebrate system to dissect the regulation of longevity.
Asunto(s)
Longevidad , Sarcopenia , Animales , Sarcopenia/metabolismo , Sirtuina 1/metabolismo , Envejecimiento , Músculo Esquelético/metabolismo , Fundulus heteroclitus , Vertebrados , BiologíaRESUMEN
Age-associated organ failure and degenerative diseases have a major impact on human health. Cardiovascular dysfunction has an increasing prevalence with age and is one of the leading causes of death. In contrast to humans, zebrafish have extraordinary regeneration capacities of complex organs including the heart. In addition, zebrafish has recently become a model organism in research on aging. Here, we have compared the ventricular transcriptome as well as the regenerative capacity after cryoinjury of old and young zebrafish hearts. We identified the immune system as activated in old ventricles and found muscle organization to deteriorate upon aging. Our data show an accumulation of immune cells, mostly macrophages, in the old zebrafish ventricle. Those immune cells not only increased in numbers but also showed morphological and behavioral changes with age. Our data further suggest that the regenerative response to cardiac injury is generally impaired and much more variable in old fish. Collagen in the wound area was already significantly enriched in old fish at 7 days post injury. Taken together, these data indicate an 'inflammaging'-like process in the zebrafish heart and suggest a change in regenerative response in the old.
Asunto(s)
Corazón , Pez Cebra , Envejecimiento , Animales , Proliferación Celular , Corazón/fisiología , Macrófagos , Pez Cebra/fisiologíaRESUMEN
The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor, which is highly conserved among vertebrates. It is a key regulator of urogenital development and homeostasis but also plays a role in other organs including the spleen and the heart. More recently additional functions for Wt1 in the mammalian central nervous system have been described. In contrast to mammals, bony fish possess two paralogous Wt1 genes, namely wt1a and wt1b. By performing detailed in situ hybridization analyses during zebrafish development, we discovered new expression domains for wt1a in the dorsal hindbrain, the caudal medulla and the spinal cord. Marker analysis identified wt1a expressing cells of the dorsal hindbrain as ependymal cells of the choroid plexus in the myelencephalic ventricle. The choroid plexus acts as a blood-cerebrospinal fluid barrier and thus is crucial for brain homeostasis. By employing wt1a mutant larvae and a dye accumulation assay with fluorescent tracers we demonstrate that Wt1a is required for proper choroid plexus formation and function. Thus, Wt1a contributes to the barrier properties of the choroid plexus in zebrafish, revealing an unexpected role for Wt1 in the zebrafish brain.
RESUMEN
Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration.
Asunto(s)
Aletas de Animales/fisiología , Corazón/fisiología , Macrófagos/metabolismo , Regeneración , Proteínas WT1/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Macrófagos/citología , Proteínas WT1/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epitelio/fisiología , Receptores ErbB/metabolismo , Intestinos/citología , Receptores de Péptidos de Invertebrados/metabolismo , Regeneración , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Clonales , Endorreduplicación , Enterocitos/metabolismo , Enterocitos/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Homeostasis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Ploidias , Transducción de Señal , Transcripción Genética , Regulación hacia Arriba/genética , Proteínas ras/metabolismoRESUMEN
Despite the identification of numerous regulators of regeneration in different animal models, a fundamental question remains: why do some wounds trigger the full regeneration of lost body parts, whereas others resolve by mere healing? By selectively inhibiting regeneration initiation, but not the formation of a wound epidermis, here we create headless planarians and finless zebrafish. Strikingly, in both missing-tissue contexts, injuries that normally do not trigger regeneration activate complete restoration of heads and fin rays. Our results demonstrate that generic wound signals have regeneration-inducing power. However, they are interpreted as regeneration triggers only in a permissive tissue context: when body parts are missing, or when tissue-resident polarity signals, such as Wnt activity in planarians, are modified. Hence, the ability to decode generic wound-induced signals as regeneration-initiating cues may be the crucial difference that distinguishes animals that regenerate from those that cannot.
Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Planarias/genética , Regeneración/genética , Vía de Señalización Wnt/genética , Cicatrización de Heridas/genética , Pez Cebra/genética , Aletas de Animales/fisiología , Animales , Cabeza/fisiología , Planarias/fisiología , Regeneración/fisiología , Transducción de Señal , Cicatrización de Heridas/fisiología , Heridas y Lesiones , Pez Cebra/fisiologíaRESUMEN
Wnt/ß-catenin signaling regulates tissue homeostasis and regeneration in metazoans. In planarians-flatworms with high regenerative potential-Wnt ligands are thought to control tissue polarity by shaping a ß-catenin activity gradient along the anterior-posterior axis, yet the downstream mechanisms are poorly understood. We performed an RNA sequencing (RNA-seq)-based screen and identified hundreds of ß-catenin-dependent transcripts, of which several were expressed in muscle tissue and stem cells in a graded fashion. In particular, a teashirt (tsh) ortholog was induced in a ß-catenin-dependent manner during regeneration in planarians and zebrafish, and RNAi resulted in two-headed planarians. Strikingly, intact planarians depleted of tsh induced anterior markers and slowly transformed their tail into a head, reminiscent of ß-catenin RNAi phenotypes. Given that ß-catenin RNAi enhanced the formation of muscle cells expressing anterior determinants in tail regions, our study suggests that this pathway controls tissue polarity through regulating the identity of differentiating cells during homeostasis and regeneration.
Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas del Helminto/metabolismo , Proteínas Represoras/metabolismo , beta Catenina/metabolismo , Animales , Secuencia de Bases , Colágeno/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Helminto/antagonistas & inhibidores , Proteínas del Helminto/genética , Datos de Secuencia Molecular , Planarias , Interferencia de ARN , ARN Bicatenario/metabolismo , Regeneración , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Células Madre/citología , Células Madre/metabolismo , Transcriptoma , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Pez Cebra , beta Catenina/antagonistas & inhibidores , beta Catenina/genéticaRESUMEN
Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.