Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Heart J ; 39(18): 1602-1609, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29409057

RESUMEN

Aims: As a sine qua non for arterial wall physiology, local hemodynamic forces such as endothelial shear stress (ESS) may influence long-term vessel changes as bioabsorbable scaffolds dissolve. The aim of this study was to perform serial computational fluid dynamic (CFD) simulations to examine immediate and long-term haemodynamic and vascular changes following bioresorbable scaffold placement. Methods and results: Coronary arterial models with long-term serial assessment (baseline and 5 years) were reconstructed through fusion of intravascular optical coherence tomography and angiography. Pulsatile non-Newtonian CFD simulations were performed to calculate the ESS and relative blood viscosity. Time-averaged, systolic, and diastolic results were compared between follow-ups. Seven patients (seven lesions) were included in this analysis. A marked heterogeneity in ESS and localised regions of high blood viscosity were observed post-implantation. Percent vessel area exposed to low averaged ESS (<1 Pa) significantly decreased over 5 years (15.92% vs. 4.99%, P < 0.0001) whereas moderate (1-7 Pa) and high ESS (>7 Pa) did not significantly change (moderate ESS: 76.93% vs. 80.7%, P = 0.546; high ESS: 7.15% vs. 14.31%, P = 0.281), leading to higher ESS at follow-up. A positive correlation was observed between baseline ESS and change in lumen area at 5 years (P < 0.0001). Maximum blood viscosity significantly decreased over 5 years (4.30 ± 1.54 vs. 3.21± 0.57, P = 0.028). Conclusion: Immediately after scaffold implantation, coronary arteries demonstrate an alternans of extremely low and high ESS values and localized areas of high blood viscosity. These initial local haemodynamic disturbances may trigger fibrin deposition and thrombosis. Also, low ESS can promote neointimal hyperplasia, but may also contribute to appropriate scaffold healing with normalisation of ESS and reduction in peak blood viscosity by 5 years.


Asunto(s)
Implantes Absorbibles , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Modelos Cardiovasculares , Andamios del Tejido , Fenómenos Biomecánicos , Vasos Coronarios/cirugía , Endotelio Vascular/cirugía , Hidrodinámica , Imagenología Tridimensional , Estrés Mecánico , Factores de Tiempo , Tomografía de Coherencia Óptica
3.
Front Cardiovasc Med ; 9: 835270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497989

RESUMEN

Patient-specific coronary endothelial shear stress (ESS) calculations using Newtonian and non-Newtonian rheological models were performed to assess whether the common assumption of Newtonian blood behavior offers similar results to a more realistic but computationally expensive non-Newtonian model. 16 coronary arteries (from 16 patients) were reconstructed from optical coherence tomographic (OCT) imaging. Pulsatile CFD simulations using Newtonian and the Quemada non-Newtonian model were performed. Endothelial shear stress (ESS) and other indices were compared. Exploratory indices including local blood viscosity (LBV) were calculated from non-Newtonian simulation data. Compared to the Newtonian results, the non-Newtonian model estimates significantly higher time-averaged ESS (1.69 (IQR 1.36)Pa versus 1.28 (1.16)Pa, p < 0.001) and ESS gradient (0.90 (1.20)Pa/mm versus 0.74 (1.03)Pa/mm, p < 0.001) throughout the cardiac cycle, under-estimating the low ESS (<1Pa) area (37.20 ± 13.57% versus 50.43 ± 14.16%, 95% CI 11.28-15.18, p < 0.001). Similar results were also found in the idealized artery simulations with non-Newtonian median ESS being higher than the Newtonian median ESS (healthy segments: 0.8238Pa versus 0.6618Pa, p < 0.001 proximal; 0.8179Pa versus 0.6610Pa, p < 0.001 distal; stenotic segments: 0.8196Pa versus 0.6611Pa, p < 0.001 proximal; 0.2546Pa versus 0.2245Pa, p < 0.001 distal) On average, the non-Newtonian model has a LBV of 1.45 times above the Newtonian model with an average peak LBV of 40-fold. Non-Newtonian blood model estimates higher quantitative ESS values than the Newtonian model. Incorporation of non-Newtonian blood behavior may improve the accuracy of ESS measurements. The non-Newtonian model also allows calculation of exploratory viscosity-based hemodynamic indices, such as local blood viscosity, which may offer additional information to detect underlying atherosclerosis.

4.
ACS Appl Mater Interfaces ; 10(37): 31019-31031, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30192499

RESUMEN

Supraparticles (SPs) composed of smaller colloidal particles provide a platform for the long-term, controlled release of therapeutics in biomedical applications. However, current synthesis methods used to achieve high drug loading and those involving biocompatible materials are often tedious and low throughput, thereby limiting the translation of SPs to diverse applications. Herein, we present a simple, effective, and automatable alginate-mediated electrospray technique for the assembly of robust spherical silica SPs (Si-SPs) for long-term (>4 months) drug delivery. The Si-SPs are composed of either porous or nonporous primary Si particles within a decomposable alginate matrix. The size and shape of the Si-SPs can be tailored by controlling the concentrations of alginate and silica primary particles used and key electrospraying parameters, such as flow rate, voltage, and collector distance. Furthermore, the performance (including drug loading kinetics, loading capacity, loading efficiency, and drug release) of the Si-SPs can be tuned by changing the porosity of the primary particles and through the retention or removal (via calcination) of the alginate matrix. The structure and morphology of the Si-SPs were characterized by electron microscopy, dynamic light scattering, N2 adsorption-desorption analysis, and X-ray photoelectron spectroscopy. The cytotoxicity and degradability of the Si-SPs were also examined. Drug loading kinetics and loading capacity for six different types of Si-SPs, using a model protein drug (fluorescently labeled lysozyme), demonstrate that Si-SPs prepared from primary silica particles with large pores can load significant amounts of lysozyme (∼10 µg per SP) and exhibit sustained, long-term release of more than 150 days. Our experiments show that Si-SPs can be produced through a gel-mediated electrospray technique that is robust and automatable (important for clinical translation and commercialization) and that they present a promising platform for long-term drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Geles/química , Dióxido de Silicio/química , Adsorción , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Porosidad
5.
Science ; 352(6281): 61-7, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27034366

RESUMEN

Pharmaceutical manufacturing typically uses batch processing at multiple locations. Disadvantages of this approach include long production times and the potential for supply chain disruptions. As a preliminary demonstration of an alternative approach, we report here the continuous-flow synthesis and formulation of active pharmaceutical ingredients in a compact, reconfigurable manufacturing platform. Continuous end-to-end synthesis in the refrigerator-sized [1.0 meter (width) × 0.7 meter (length) × 1.8 meter (height)] system produces sufficient quantities per day to supply hundreds to thousands of oral or topical liquid doses of diphenhydramine hydrochloride, lidocaine hydrochloride, diazepam, and fluoxetine hydrochloride that meet U.S. Pharmacopeia standards. Underlying this flexible plug-and-play approach are substantial enabling advances in continuous-flow synthesis, complex multistep sequence telescoping, reaction engineering equipment, and real-time formulation.


Asunto(s)
Química Farmacéutica/métodos , Preparaciones Farmacéuticas/síntesis química , Diazepam/síntesis química , Diazepam/normas , Difenhidramina/síntesis química , Difenhidramina/normas , Lidocaína/síntesis química , Lidocaína/normas , Preparaciones Farmacéuticas/normas , Farmacopeas como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA