Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(5): 777-793.e20, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35196500

RESUMEN

In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.


Asunto(s)
Blastocisto , Embrión de Mamíferos , Endodermo , Animales , Blastocisto/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Membrana Celular/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Endodermo/metabolismo , Mamíferos , Ratones , Transporte de Proteínas
3.
Biophys J ; 122(16): 3219-3237, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37415335

RESUMEN

Collagen is a key structural component of multicellular organisms and is arranged in a highly organized manner. In structural tissues such as tendons, collagen forms bundles of parallel fibers between cells, which appear within a 24-h window between embryonic day 13.5 (E13.5) and E14.5 during mouse embryonic development. Current models assume that the organized structure of collagen requires direct cellular control, whereby cells actively lay down collagen fibrils from cell surfaces. However, such models appear incompatible with the time and length scales of fibril formation. We propose a phase-transition model to account for the rapid development of ordered fibrils in embryonic tendon, reducing reliance on active cellular processes. We develop phase-field crystal simulations of collagen fibrillogenesis in domains derived from electron micrographs of inter-cellular spaces in embryonic tendon and compare results qualitatively and quantitatively to observed patterns of fibril formation. To test the prediction of this phase-transition model that free protomeric collagen should exist in the inter-cellular spaces before the formation of observable fibrils, we use laser-capture microdissection, coupled with mass spectrometry, which demonstrates steadily increasing free collagen in inter-cellular spaces up to E13.5, followed by a rapid reduction of free collagen that coincides with the appearance of less-soluble collagen fibrils. The model and measurements together provide evidence for extracellular self-assembly of collagen fibrils in embryonic mouse tendon, supporting an additional mechanism for rapid collagen fibril formation during embryonic development.


Asunto(s)
Desarrollo Embrionario , Matriz Extracelular , Animales , Ratones , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Membrana Celular , Tendones/química , Tendones/metabolismo
4.
Biomech Model Mechanobiol ; 22(5): 1465-1486, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36201070

RESUMEN

The vertex model is widely used to simulate the mechanical properties of confluent epithelia and other multicellular tissues. This inherently discrete framework allows a Cauchy stress to be attributed to each cell, and its symmetric component has been widely reported, at least for planar monolayers. Here, we consider the stress attributed to the neighbourhood of each tricellular junction, evaluating in particular its leading-order antisymmetric component and the associated couple stresses, which characterise the degree to which individual cells experience (and resist) in-plane bending deformations. We develop discrete potential theory for localised monolayers having disordered internal structure and use this to derive the analogues of Airy and Mindlin stress functions. These scalar potentials typically have broad-banded spectra, highlighting the contributions of small-scale defects and boundary layers to global stress patterns. An affine approximation attributes couple stresses to pressure differences between cells sharing a trijunction, but simulations indicate an additional role for non-affine deformations.


Asunto(s)
Epitelio , Modelos Biológicos , Epitelio/fisiología
5.
Matrix Biol Plus ; 12: 100079, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34381990

RESUMEN

Collagen fibrils are essential for metazoan life. They are the largest, most abundant, and most versatile protein polymers in animals, where they occur in the extracellular matrix to form the structural basis of tissues and organs. Collagen fibrils were first observed at the turn of the 20th century. During the last 40 years, the genes that encode the family of collagens have been identified, the structure of the collagen triple helix has been solved, the many enzymes involved in the post-translational modifications of collagens have been identified, mutations in the genes encoding collagen and collagen-associated proteins have been linked to heritable disorders, and changes in collagen levels have been associated with a wide range of diseases, including cancer. Yet despite extensive research, a full understanding of how cells assemble collagen fibrils remains elusive. Here, we review current models of collagen fibril self-assembly, and how cells might exert control over the self-assembly process to define the number, length and organisation of fibrils in tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA