Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Sensors (Basel) ; 15(4): 8787-831, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25884787

RESUMEN

The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.


Asunto(s)
Técnicas Biosensibles/métodos , Óptica y Fotónica/métodos , Humanos , Nanoestructuras/efectos adversos , Nanotecnología
2.
ScientificWorldJournal ; 2014: 246206, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25379524

RESUMEN

Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.


Asunto(s)
Algoritmos , Procesamiento de Señales Asistido por Computador/instrumentación , Tecnología Inalámbrica/instrumentación , Sistemas de Información Geográfica , Humanos , Microondas
3.
ScientificWorldJournal ; 2014: 671619, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25019096

RESUMEN

Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE) and finite element method (FEM). The non-Fourier heat conduction has been investigated where the maximum likelihood (ML) and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML), another well-conditioned scheme, called mass effect (ME) T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME) showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE) and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model.


Asunto(s)
Termodinámica , Modelos Teóricos
4.
ScientificWorldJournal ; 2014: 128195, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25045725

RESUMEN

In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods.


Asunto(s)
Algoritmos , Relación Señal-Ruido , Tecnología Inalámbrica
5.
ScientificWorldJournal ; 2014: 601729, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25202733

RESUMEN

Although ray tracing based propagation prediction models are popular for indoor radio wave propagation characterization, most of them do not provide an integrated approach for achieving the goal of optimum coverage, which is a key part in designing wireless network. In this paper, an accelerated technique of three-dimensional ray tracing is presented, where rough surface scattering is included for making a more accurate ray tracing technique. Here, the rough surface scattering is represented by microfacets, for which it becomes possible to compute the scattering field in all possible directions. New optimization techniques, like dual quadrant skipping (DQS) and closest object finder (COF), are implemented for fast characterization of wireless communications and making the ray tracing technique more efficient. In conjunction with the ray tracing technique, probability based coverage optimization algorithm is accumulated with the ray tracing technique to make a compact solution for indoor propagation prediction. The proposed technique decreases the ray tracing time by omitting the unnecessary objects for ray tracing using the DQS technique and by decreasing the ray-object intersection time using the COF technique. On the other hand, the coverage optimization algorithm is based on probability theory, which finds out the minimum number of transmitters and their corresponding positions in order to achieve optimal indoor wireless coverage. Both of the space and time complexities of the proposed algorithm surpass the existing algorithms. For the verification of the proposed ray tracing technique and coverage algorithm, detailed simulation results for different scattering factors, different antenna types, and different operating frequencies are presented. Furthermore, the proposed technique is verified by the experimental results.


Asunto(s)
Algoritmos , Modelos Teóricos
6.
ScientificWorldJournal ; 2014: 683971, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25133252

RESUMEN

A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.


Asunto(s)
Electrónica/instrumentación , Radio/instrumentación , Electrónica/métodos
7.
J Digit Imaging ; 26(6): 1107-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23515843

RESUMEN

Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.


Asunto(s)
Retinopatía Diabética/diagnóstico , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Vasos Retinianos/patología , Algoritmos , Diagnóstico por Imagen/métodos , Femenino , Humanos , Masculino , Retinoscopía/métodos , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
8.
J Med Syst ; 37(3): 9938, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23504472

RESUMEN

An improved and efficient method is presented in this paper to achieve a better trade-off between noise removal and edge preservation, thereby detecting the tumor region of MRI brain images automatically. Compass operator has been used in the fourth order Partial Differential Equation (PDE) based denoising technique to preserve the anatomically significant information at the edges. A new morphological technique is also introduced for stripping skull region from the brain images, which consequently leading to the process of detecting tumor accurately. Finally, automatic seeded region growing segmentation based on an improved single seed point selection algorithm is applied to detect the tumor. The method is tested on publicly available MRI brain images and it gives an average PSNR (Peak Signal to Noise Ratio) of 36.49. The obtained results also show detection accuracy of 99.46%, which is a significant improvement than that of the existing results.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Sistemas de Computación , Humanos , Neoplasias , Reconocimiento de Normas Patrones Automatizadas , Reproducibilidad de los Resultados , Relación Señal-Ruido
9.
Heliyon ; 9(11): e22203, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045118

RESUMEN

This paper presents a transfer and deep learning based approach to the classification of Sickle Cell Disease (SCD). Five transfer learning models such as ResNet-50, AlexNet, MobileNet, VGG-16 and VGG-19, and a sequential convolutional neural network (CNN) have been implemented for SCD classification. ErythrocytesIDB dataset has been used for training and testing the models. In order to make up for the data insufficiency of the erythrocytesIDB dataset, advanced image augmentation techniques are employed to ensure the robustness of the dataset, enhance dataset diversity and improve the accuracy of the models. An ablation experiment using Random Forest and Support Vector Machine (SVM) classifiers along with various hyperparameter tweaking was carried out to determine the contribution of different model elements on their predicted accuracy. A rigorous statistical analysis was carried out for evaluation and to further evaluate the model's robustness, an adversarial attack test was conducted. The experimental results demonstrate compelling performance across all models. After performing the statistical tests, it was observed that MobileNet showed a significant improvement (p = 0.0229), while other models (ResNet-50, AlexNet, VGG-16, VGG-19) did not (p > 0.05). Notably, the ResNet-50 model achieves remarkable precision, recall, and F1-score values of 100 % for circular, elongated, and other cell shapes when experimented with a smaller dataset. The AlexNet model achieves a balanced precision (98 %) and recall (99 %) for circular and elongated shapes. Meanwhile, the other models showcase competitive performance.

10.
Array (N Y) ; 17: 100271, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36530931

RESUMEN

COVID-19, a worldwide pandemic that has affected many people and thousands of individuals have died due to COVID-19, during the last two years. Due to the benefits of Artificial Intelligence (AI) in X-ray image interpretation, sound analysis, diagnosis, patient monitoring, and CT image identification, it has been further researched in the area of medical science during the period of COVID-19. This study has assessed the performance and investigated different machine learning (ML), deep learning (DL), and combinations of various ML, DL, and AI approaches that have been employed in recent studies with diverse data formats to combat the problems that have arisen due to the COVID-19 pandemic. Finally, this study shows the comparison among the stand-alone ML and DL-based research works regarding the COVID-19 issues with the combinations of ML, DL, and AI-based research works. After in-depth analysis and comparison, this study responds to the proposed research questions and presents the future research directions in this context. This review work will guide different research groups to develop viable applications based on ML, DL, and AI models, and will also guide healthcare institutes, researchers, and governments by showing them how these techniques can ease the process of tackling the COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA