Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Br J Haematol ; 202(2): 384-392, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37156607

RESUMEN

We investigated 390 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients treated according to NOPHO ALL 2008, regarding copy number alterations (CNA) of eight loci associated with adverse prognosis, including IKZF1. The impact on outcome was investigated for each locus individually, combined as CNA profiles and together with cytogenetic information. The presence of IKZF1 deletion or a poor-risk CNA profile was associated with poor outcome in the whole cohort. In the standard-risk group, IKZF1-deleted cases had an inferior probability of relapse-free survival (pRFS) (p ≤ 0.001) and overall survival (pOS) (p ≤ 0.001). Additionally, among B-other patients, IKZF1 deletion correlated with poor pRFS (60% vs. 90%) and pOS (65% vs. 89%). Both IKZF1 deletion and a poor-risk CNA profile were independent factors for relapse and death in multivariable analyses adjusting for known risk factors including measurable residual disease. Our data indicate that BCP-ALL patients with high-risk CNA or IKZF1 deletion have worse prognosis despite otherwise low-risk features. Conversely, patients with both a good CNA and cytogenetic profile had a superior relapse-free (p ≤ 0.001) and overall survival (p ≤ 0.001) in the cohort, across all risk groups. Taken together, our findings highlight the potential of CNA assessment to refine stratification in ALL.


Asunto(s)
Recurrencia Local de Neoplasia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Niño , Humanos , Pronóstico , Eliminación de Gen , Recurrencia Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Factores de Transcripción/genética , Factor de Transcripción Ikaros/genética
2.
Hum Mutat ; 43(11): 1567-1575, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35842787

RESUMEN

Prader-Willi syndrome (PWS; MIM# 176270) is a neurodevelopmental disorder caused by the loss of expression of paternally imprinted genes within the PWS region located on 15q11.2. It is usually caused by either maternal uniparental disomy of chromosome 15 (UPD15) or 15q11.2 recurrent deletion(s). Here, we report a healthy carrier of a balanced X;15 translocation and her two daughters, both with the karyotype 45,X,der(X)t(X;15)(p22;q11.2),-15. Both daughters display symptoms consistent with haploinsufficiency of the SHOX gene and PWS. We explored the architecture of the derivative chromosomes and investigated effects on gene expression in patient-derived neural cells. First, a multiplex ligation-dependent probe amplification methylation assay was used to determine the methylation status of the PWS-region revealing maternal UPD15 in daughter 2, explaining her clinical symptoms. Next, short read whole genome sequencing and 10X genomics linked read sequencing was used to pinpoint the exact breakpoints of the translocation. Finally, we performed transcriptome sequencing on neuroepithelial stem cells from the mother and from daughter 1 and observed biallelic expression of genes in the PWS region (including SNRPN) in daughter 1. In summary, our multi-omics analysis highlights two different PWS mechanisms in one family and provide an example of how structural variation can affect imprinting through long-range interactions.


Asunto(s)
Metilación de ADN , Síndrome de Prader-Willi , Cromosomas Humanos Par 15/genética , Femenino , Impresión Genómica , Humanos , Síndrome de Prader-Willi/genética , Translocación Genética , Disomía Uniparental/genética , Proteínas Nucleares snRNP/genética
3.
Hepatology ; 64(5): 1743-1756, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27532775

RESUMEN

Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo. However, in two-dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more-accurate and relevant long-term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly-l-lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down-regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more-efficient differentiation protocols for stem-cell-derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. CONCLUSION: miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro. (Hepatology 2016;64:1743-1756).


Asunto(s)
Desdiferenciación Celular/genética , Hepatocitos/fisiología , MicroARNs/fisiología , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transcriptoma
4.
Front Oncol ; 13: 1217712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664045

RESUMEN

Introduction: The suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods. Methods: For this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL. Results: Both the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions. Discussion: The filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL.

5.
Front Pediatr ; 10: 1082986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704135

RESUMEN

In the present report, we applied whole genome sequencing (WGS) to genetically characterize a case of pediatric T-cell acute lymphoblastic leukemia (ALL) refractory to standard therapy. WGS identified a novel JAK2 fusion, with CCDC88C as a partner. CCDC88C encodes a protein part of the Wnt signaling pathway and has previously been described in hematological malignancies as fusion partner to FLT3 and PDGFRB. The novel CCDC88C::JAK2 fusion gene results in a fusion transcript, predicted to produce a hybrid protein, which retains the kinase domain of JAK2 and is expected to respond to JAK2 inhibitors. This report illustrates the potential of WGS in the diagnostic setting of ALL.

6.
Front Oncol ; 12: 899325, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865473

RESUMEN

Risk-adapted treatment in acute lymphoblastic leukemia (ALL) relies on genetic information and measurable residual disease (MRD) monitoring. In this proof of concept study, DNA from diagnostic bone marrow (BM) of six children with ALL, without stratifying genetics or central nervous system (CNS) involvement, underwent whole-genome sequencing (WGS) to identify structural variants (SVs) in the leukemic blasts. Unique sequences generated by SVs were targeted with patient-specific droplet digital PCR (ddPCR) assays. Genomic DNA (gDNA) from BM and cell-free DNA (cfDNA) from plasma and cerebrospinal fluid (CSF) were analyzed longitudinally. WGS with 30× coverage enabled target identification in all cases. Limit of quantifiability (LoQ) and limit of detection (LoD) for the ddPCR assays (n = 15) were up to 10-5 and 10-6, respectively. All targets were readily detectable in a multiplexed ddPCR with minimal DNA input (1 ng of gDNA) at a 10-1 dilution, and targets for half of the patients were also detectable at a 10-2 dilution. The level of MRD in BM at end of induction and end of consolidation block 1 was in a comparable range between ddPCR and clinical routine methods for samples with detectable residual disease, although our approach consistently detected higher MRD values for patients with B-cell precursor ALL. Additionally, several samples with undetectable MRD by flow cytometry were MRD-positive by ddPCR. In plasma, the level of leukemic targets decreased in cfDNA over time following the MRD level detected in BM. cfDNA was successfully extracted from all diagnostic CSF samples (n = 6), and leukemic targets were detected in half of these. The results suggest that our approach to design molecular assays, together with ddPCR quantification, is a technically feasible option for accurate MRD quantification and that cfDNA may contribute valuable information regarding MRD and low-grade CNS involvement.

8.
PLoS One ; 12(10): e0186325, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29049335

RESUMEN

Out of the 430 known solute carriers (SLC) in humans, 30% are still orphan transporters regarding structure, distribution or function. Approximately one third of all SLCs belong to the evolutionary conserved and functionally diverse Major Facilitator Superfamily (MFS). Here, we studied the orphan proteins, MFSD4A and MFSD9, which are atypical SLCs of MFS type. Hidden Markov Models were used to identify orthologues in several vertebrates, and human MFSD4A and MFSD9 share high sequence identity with their identified orthologues. MFSD4A and MFSD9 also shared more than 20% sequence identity with other phylogenetically related SLC and MFSD proteins, allowing new family clustering. Homology models displayed 12 transmembrane segments for both proteins, which were predicted to fold into a transporter-shaped structure. Furthermore, we analysed the location of MFSD4A and MFSD9 in adult mouse brain using immunohistochemistry, showing abundant neuronal protein staining. As MFSD4A and MFSD9 are plausible transporters expressed in food regulatory brain areas, we monitored transcriptional changes in several mouse brain areas after 24 hours food-deprivation and eight weeks of high-fat diet, showing that both genes were affected by altered food intake in vivo. In conclusion, we propose MFSD4A and MFSD9 to be novel transporters, belonging to disparate SLC families. Both proteins were located to neurons in mouse brain, and their mRNA expression levels were affected by the diet.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Humanos , Inmunohistoquímica , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Ratones , Filogenia , Conformación Proteica , ARN Mensajero/genética
9.
Science ; 352(6291): 1326-1329, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27284195

RESUMEN

Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Neurogénesis , Oligodendroglía/citología , Animales , Antígenos/genética , Antígenos/metabolismo , Biomarcadores/metabolismo , Encéfalo/citología , Linaje de la Célula , Células Cultivadas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Aprendizaje/fisiología , Ratones , Actividad Motora/fisiología , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , ARN Mensajero/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA