Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Prog Mol Biol Transl Sci ; 201: 1-19, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37770166

RESUMEN

Pseudomonas aeruginosa is denoted as one of the highly threatening bacteria to the public health. It has acquired many virulent factors and resistant genes that make it difficult to control with conventional antibiotics. Thus, bacteriophage therapy (phage therapy) is a proposed alternative to antibiotics to fight against multidrug-resistant P. aeruginosa. Many phages have been isolated that exhibit a broad spectrum of activity against P. aeruginosa. In this chapter, the common virulent factors and the prevalence of antibiotic-resistance genes in P. aeruginosa were reported. In addition, recent efforts in the field of phage therapy against P. aeruginosa were highlighted, including wild-type phages, genetically modified phages, phage cocktails, and phage in combination with antibiotics against P. aeruginosa in the planktonic and biofilm forms. Recent regulations on phage therapy were also covered in this chapter.

2.
Microorganisms ; 10(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336164

RESUMEN

Escherichia coli (E. coli) is one of the most common pathogenic bacteria worldwide. Avian pathogenic E. coli (APEC) causes severe systemic disease in poultry (Colibacillosis), and accordingly, has an extreme risk to the poultry industry and public health worldwide. Due to the increased rate of multi-drug resistance among these bacteria, it is necessary to find an alternative therapy to antibiotics to treat such infections. Bacteriophages are considered one of the best solutions. This study aimed to isolate, characterize, and evaluate the potential use of isolated bacteriophages to control E. coli infections in poultry. Three novel phages against E. coli O18 were isolated from sewage water and characterized in vitro. The genome size of the three phages was estimated to be 44,776 bp, and the electron microscopic analysis showed that they belonged to the Siphoviridae family, in the order Caudovirales. Phages showed good tolerance to a broad range of pH and temperature. The complete genomes of three phages were sequenced and deposited into the GenBank database. The closely related published genomes of Escherichia phages were identified using BLASTn alignment and phylogenetic trees. The prediction of the open reading frames (ORFs) identified protein-coding genes that are responsible for functions that have been assigned such as cell lysis proteins, DNA packaging proteins, structural proteins, and DNA replication/transcription/repair proteins.

3.
AMB Express ; 12(1): 108, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987838

RESUMEN

Antimicrobial alternatives such as nanoparticles are critically required to tackle bacterial infections, especially with the emerging threat of antibiotic resistance. Therefore, this study aimed to biosynthesize Au-Ag nanoparticles using propolis as a natural reducing agent and investigate their antibacterial activity against antibiotic-resistant Staphylococcus sciuri (S. sciuri), Pseudomonas aeruginosa (P. aeruginosa), and Salmonella enterica Typhimurium (S. enterica), besides demonstrating their anticancer activity in cancer cell lines. The biosynthesized Au@AgNPs were characterized using UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transformation Infrared (FTIR), and Scanning Electron Microscopy (SEM). Moreover, the detection of antibacterial activity was assessed through disc diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), time-killing curve, and detection of cell membrane integrity via SEM. As a result, the UV-Vis spectrum revealed the formation of Au@AgNPs in a single peak between 533 and 555 nm. Furthermore, FTIR analysis confirmed nanoparticles' green synthesis due to the presence of carbon functional groups. The formulated Au@AgNPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. The MIC and the MBC of P. aeruginosa and S. sciuri were 31.25 µg/mL. However, nanoparticles were more effective on S. enterica with MIC of 7.5 µg/mL and MBC of 15.6 µg/mL. Furthermore, the time-killing curve of the three model bacteria with the treatment was effective at 50 µg/mL. Besides, SEM of the tested bacteria indicated unintegrated bacterial cell membranes and damage caused by Au@AgNPs. Regarding the anticancer activity, the results indicated that the biosynthesized Au@AgNPs have a cytotoxic effect on HEPG2 cell lines. In conclusion, this research revealed that the green synthesized Au@AgNPs could be effective antibacterial agents against S. sciuri, P. aeruginosa, and S. enterica and anticancer agents against HEPG2.

4.
J Genet Eng Biotechnol ; 20(1): 133, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094767

RESUMEN

BACKGROUND: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. RESULTS: The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4-10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. CONCLUSION: The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa.

5.
Curr Res Microb Sci ; 2: 100050, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34841341

RESUMEN

Bacteriophages, bacteria-infecting viruses, are considered by many researchers a promising solution for antimicrobial resistance. On the other hand, some phages have shown contribution to bacterial resistance phenomenon by transducing antimicrobial resistance genes to their bacterial hosts. Contradictory consequences of infections are correlated to different phage lifecycles. Out of four known lifecycles, lysogenic and lytic pathways have been riddles since the uncontrolled conversion between them could negatively affect the intended use of phages. However, phages still can be engineered for applications against bacterial and viral infections to ensure high efficiency. This review highlights two main aspects: (1) the different lifecycles as well as the different factors that affect lytic-lysogenic switch are discussed, including the intracellular and molecular factors control this decision. In addition, different models which describe the effect of phages on the ecosystem are compared, besides the approaches to study the switch. (2) An overview on the contribution of the phage in the evolution of the bacteria, instead of eating them, as a consequence of different mode of actions. As well, how phage display has helped in restricting phage cheating and how it could open new gates for immunization and pandemics control will be tacked.

6.
Antibiotics (Basel) ; 10(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34572629

RESUMEN

(Background): Multi-drug-resistant Klebsiella pneumoniae (MDR-KP) has steadily grown beyond antibiotic control. Wound infection kills many patients each year, due to the entry of multi-drug resistant (MDR) bacterial pathogens into the skin gaps. However, a bacteriophage (phage) is considered to be a potential antibiotic alternative for treating bacterial infections. This research aims at isolating and characterizing a specific phage and evaluate its topical activity against MDR-KP isolated from infected wounds. (Methods): A lytic phage ZCKP8 was isolated by using a clinical isolate KP/15 as a host strain then characterized. Additionally, phage was assessed for its in vitro host range, temperature, ultraviolet (UV), and pH sensitivity. The therapeutic efficiency of phage suspension and a phage-impeded gel vehicle were assessed in vivo against a K. pneumoniae infected wound on a rat model. (Result): The phage produced a clear plaque and was classified as Siphoviridae. The phage inhibited KP/15 growth in vitro in a dose-dependent pattern and it was found to resist high temperature (˂70 °C) and was primarily active at pH 5; moreover, it showed UV stability for 45 min. Phage-treated K. pneumoniae inoculated wounds showed the highest healing efficiency by lowering the infection. The quality of the regenerated skin was evidenced via histological examination compared to the untreated control group. (Conclusions): This research represents the evidence of effective phage therapy against MDR-KP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA