Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681928

RESUMEN

Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavß3/α2δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Regulación hacia Arriba , Proteínas de Transporte Vesicular/metabolismo , Animales , Sitios de Unión , Femenino , Células HEK293 , Humanos , Dominios Proteicos , Ratas , Técnicas del Sistema de Dos Híbridos , Xenopus
2.
J Neurochem ; 154(6): 647-661, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32233089

RESUMEN

SUMOylation is a dynamic post-translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA-related processes. In neurons, the SUMOylation-dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His6 -HA-SUMO1 knock-in mouse line, we previously identified the transcription factor Zinc finger and BTB domain-containing 20 (Zbtb20) as a new SUMO1-conjugate. We show here that the three key SUMO paralogues SUMO1, SUMO2, and SUMO3 can all be conjugated to Zbtb20 in vitro in HEK293FT cells, and we confirm the SUMOylation of Zbtb20 in vivo in mouse brain. Using primary hippocampal neurons from wild-type and Zbtb20 knock-out (KO) mice as a model system, we then demonstrate that the expression of Zbtb20 is required for proper nerve cell development and neurite growth and branching. Furthermore, we show that the SUMOylation of Zbtb20 is essential for its function in this context, and provide evidence indicating that SUMOylation affects the Zbtb20-dependent transcriptional profile of neurons. Our data highlight the role of SUMOylation in the regulation of neuronal transcription factors that determine nerve cell development, and they demonstrate that key functions of the transcription factor Zbtb20 in neuronal development and neurite growth are under obligatory SUMOylation control.


Asunto(s)
Sistema Nervioso/crecimiento & desarrollo , Sumoilación/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Animales , Supervivencia Celular , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Células HEK293 , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuritas/fisiología , Neuronas/metabolismo , Cultivo Primario de Células , ARN/biosíntesis , ARN/genética
3.
J Biol Chem ; 292(4): 1160-1177, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27941024

RESUMEN

The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations.


Asunto(s)
Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Neuronas GABAérgicas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Membranas Sinápticas/metabolismo , Potenciales Sinápticos/fisiología , Animales , Neuronas GABAérgicas/citología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
4.
Nat Chem Biol ; 12(9): 755-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27454932

RESUMEN

Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling.


Asunto(s)
Diglicéridos/metabolismo , Diglicéridos/efectos de la radiación , Procesos Fotoquímicos/efectos de la radiación , Proteína Quinasa C/metabolismo , Proteína Quinasa C/efectos de la radiación , Rayos Ultravioleta , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de la radiación , Diglicéridos/química , Ratones , Fenómenos Ópticos , Proteína Quinasa C/química , Transducción de Señal/efectos de la radiación
5.
J Cell Sci ; 128(4): 638-44, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25609709

RESUMEN

Ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle replenishment to indefatigably encode sound. In neurons, neuroendocrine and immune cells, vesicle replenishment depends on proteins of the mammalian uncoordinated 13 (Munc13, also known as Unc13) and Ca(2+)-dependent activator proteins for secretion (CAPS) families, which prime vesicles for exocytosis. Here, we tested whether Munc13 and CAPS proteins also regulate exocytosis in mouse IHCs by combining immunohistochemistry with auditory systems physiology and IHC patch-clamp recordings of exocytosis in mice lacking Munc13 and CAPS isoforms. Surprisingly, we did not detect Munc13 or CAPS proteins at IHC presynaptic active zones and found normal IHC exocytosis as well as auditory brainstem responses (ABRs) in Munc13 and CAPS deletion mutants. Instead, we show that otoferlin, a C2-domain protein that is crucial for vesicular fusion and replenishment in IHCs, clusters at the plasma membrane of the presynaptic active zone. Electron tomography of otoferlin-deficient IHC synapses revealed a reduction of short tethers holding vesicles at the active zone, which might be a structural correlate of impaired vesicle priming in otoferlin-deficient IHCs. We conclude that IHCs use an unconventional priming machinery that involves otoferlin.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Proteínas de la Membrana/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Tomografía con Microscopio Electrónico , Exocitosis/fisiología , Femenino , Células Ciliadas Auditivas Internas/citología , Audición/genética , Audición/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp
6.
Proc Natl Acad Sci U S A ; 111(36): 13205-10, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157163

RESUMEN

Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos Multiproteicos/metabolismo , Neuritas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral/citología , Hipocampo/citología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Noqueados , Modelos Biológicos , Morfogénesis , Ubiquitina-Proteína Ligasas Nedd4 , Poliubiquitina/metabolismo , Biosíntesis de Proteínas , Ubiquitinación
7.
Proc Natl Acad Sci U S A ; 110(51): 20795-800, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297911

RESUMEN

In many brain regions, gephyrin and GABAA receptor clustering at developing inhibitory synapses depends on the guanine nucleotide exchange factor collybistin (Cb). The vast majority of Cb splice variants contain an autoinhibitory src homology 3 domain, and several synaptic proteins are known to bind to this SH3 domain and to thereby activate gephyrin clustering. However, many functional GABAergic synapses form independently of the known Cb-activating proteins, indicating that additional Cb activators must exist. Here we show that the small Rho-like GTPase TC10 stimulates Cb-dependent gephyrin clustering by binding in its active, GTP-bound state to the pleckstrin homology domain of Cb. Overexpression of a constitutively active TC10 variant in neurons causes an increase in the density of synaptic gephyrin clusters and mean miniature inhibitory postsynaptic current amplitudes, whereas a dominant negative TC10 variant has opposite effects. The enhancement of Cb-induced gephyrin clustering by GTP-TC10 does not depend on the guanine nucleotide exchange activity of Cb but involves an interaction that resembles reported interactions of other small GTPases with their effectors. Our data indicate that GTP-TC10 activates the major src homology 3 domain-containing Cb variants by relieving autoinhibition and thus define an alternative GTPase-driven signaling pathway in the genesis of inhibitory synapses.


Asunto(s)
Proteínas Portadoras/metabolismo , Neuronas GABAérgicas/metabolismo , Guanosina Trifosfato/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Densidad Postsináptica/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Potenciales Sinápticos/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Células COS , Proteínas Portadoras/genética , Chlorocebus aethiops , Neuronas GABAérgicas/citología , Guanosina Trifosfato/genética , Hipocampo/citología , Humanos , Proteínas de la Membrana/genética , Densidad Postsináptica/genética , Estructura Terciaria de Proteína , Ratas , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteínas de Unión al GTP rho/genética
8.
EMBO J ; 30(1): 165-80, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21119615

RESUMEN

Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)-95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι-/- synapses show a reduction in metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at neonatal (∼2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR-LTD at DGKι-/- synapses. These results suggest that DGKι requires PSD-95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR-LTD.


Asunto(s)
Encéfalo/metabolismo , Diacilglicerol Quinasa/análisis , Diacilglicerol Quinasa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Animales , Encéfalo/ultraestructura , Línea Celular , Células Cultivadas , Diacilglicerol Quinasa/genética , Maleato de Dizocilpina/metabolismo , Eliminación de Gen , Expresión Génica , Humanos , Ratones , Neuronas/metabolismo , Neuronas/ultraestructura , Neurotransmisores/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica
9.
Biochim Biophys Acta Biomembr ; 1866(6): 184337, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763272

RESUMEN

Ca2+ influx through Cav3.3 T-type channel plays crucial roles in neuronal excitability and is subject to regulation by various signaling molecules. However, our understanding of the partners of Cav3.3 and the related regulatory pathways remains largely limited. To address this quest, we employed the rat Cav3.3 C-terminus as bait in yeast-two-hybrid screenings of a cDNA library, identifying rat Gß2 as an interaction partner. Subsequent assays revealed that the interaction of Gß2 subunit was specific to the Cav3.3 C-terminus. Through systematic dissection of the C-terminus, we pinpointed a 22 amino acid sequence (amino acids 1789-1810) as the Gß2 interaction site. Coexpression studies of rat Cav3.3 with various Gßγ compositions were conducted in HEK-293 cells. Patch clamp recordings revealed that coexpression of Gß2γ2 reduced Cav3.3 current density and accelerated inactivation kinetics. Interestingly, the effects were not unique to Gß2γ2, but were mimicked by Gß2 alone as well as other Gßγ dimers, with similar potencies. Deletion of the Gß2 interaction site abolished the effects of Gß2γ2. Importantly, these Gß2 effects were reproduced in human Cav3.3. Overall, our findings provide evidence that Gß(γ) complexes inhibit Cav3.3 channel activity and accelerate the inactivation kinetics through the Gß interaction with the Cav3.3 C-terminus.


Asunto(s)
Canales de Calcio Tipo T , Subunidades beta de la Proteína de Unión al GTP , Animales , Humanos , Ratas , Canales de Calcio Tipo R , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/química , Proteínas de Transporte de Catión , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/química , Células HEK293 , Cinética , Técnicas de Placa-Clamp , Unión Proteica
10.
J Neurosci ; 32(22): 7632-45, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22649242

RESUMEN

Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.


Asunto(s)
Colesterol/biosíntesis , Neuritas/fisiología , Neuronas/citología , Neuronas/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Anticolesterolemiantes , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Colesterol/farmacología , Embrión de Mamíferos , Efrina-A5/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Farnesil Difosfato Farnesil Transferasa/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Hipocampo/citología , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/fisiología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Neuritas/efectos de los fármacos , Neuritas/ultraestructura , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Open Biol ; 13(8): 230063, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37528732

RESUMEN

Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity in vivo and CA1 pyramidal cells from Munc13-1/Munc13-2 knockout mice with completely blocked synaptic transmission. Neither the induction of extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades the lognormal-like distribution but changes its mean, variance and skewness. The skewed distribution develops early in the life of the neuron. Our findings and their computational modelling support the idea that intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic and extrinsic synaptic plasticity maintains lognormal-like distribution of spines.


Asunto(s)
Plasticidad Neuronal , Neuronas , Ratones , Ratas , Animales , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Células Piramidales/metabolismo , Espinas Dendríticas/metabolismo , Transmisión Sináptica/fisiología , Sinapsis/fisiología , Neurogénesis
12.
J Neurosci ; 31(13): 4886-95, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21451027

RESUMEN

Cochlear inner hair cells (IHCs) use Ca(2+)-dependent exocytosis of glutamate to signal sound information. Otoferlin (Otof), a C(2) domain protein essential for IHC exocytosis and hearing, may serve as a Ca(2+) sensor in vesicle fusion in IHCs that seem to lack the classical neuronal Ca(2+) sensors synaptotagmin 1 (Syt1) and Syt2. Support for the Ca(2+) sensor of fusion hypothesis for otoferlin function comes from biochemical experiments, but additional roles in late exocytosis upstream of fusion have been indicated by physiological studies. Here, we tested the functional equivalence of otoferlin and Syt1 in three neurosecretory model systems: auditory IHCs, adrenal chromaffin cells, and hippocampal neurons. Long-term and short-term ectopic expression of Syt1 in IHCs of Otof (-/-) mice by viral gene transfer in the embryonic inner ear and organotypic culture failed to rescue their Ca(2+) influx-triggered exocytosis. Conversely, virally mediated overexpression of otoferlin did not restore phasic exocytosis in Syt1-deficient chromaffin cells or neurons but enhanced asynchronous release in the latter. We further tested exocytosis in Otof (-/-) hippocampal neurons and in Syt1(-/-) IHCs but found no deficits in vesicle fusion. Expression analysis of different synaptotagmin isoforms indicated that Syt1 and Syt2 are absent from mature IHCs. Our data argue against a simple functional equivalence of the two C(2) domain proteins in exocytosis of IHC ribbon synapses, chromaffin cells, and hippocampal synapses.


Asunto(s)
Exocitosis/fisiología , Proteínas de la Membrana/fisiología , Sinaptotagmina I/fisiología , Estimulación Acústica/métodos , Animales , Animales Recién Nacidos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Exocitosis/genética , Hipocampo/citología , Hipocampo/fisiología , Fusión de Membrana/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Inhibición Neural/genética , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Sinapsis/genética , Sinapsis/fisiología , Sinaptotagmina I/deficiencia , Sinaptotagmina I/genética
13.
Neuron ; 110(2): 248-265.e9, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34767769

RESUMEN

Despite the importance of dopamine for striatal circuit function, mechanistic understanding of dopamine transmission remains incomplete. We recently showed that dopamine secretion relies on the presynaptic scaffolding protein RIM, indicating that it occurs at active zone-like sites similar to classical synaptic vesicle exocytosis. Here, we establish using a systematic gene knockout approach that Munc13 and Liprin-α, active zone proteins for vesicle priming and release site organization, are important for dopamine secretion. Furthermore, RIM zinc finger and C2B domains, which bind to Munc13 and Liprin-α, respectively, are needed to restore dopamine release after RIM ablation. In contrast, and different from typical synapses, the active zone scaffolds RIM-BP and ELKS, and RIM domains that bind to them, are expendable. Hence, dopamine release necessitates priming and release site scaffolding by RIM, Munc13, and Liprin-α, but other active zone proteins are dispensable. Our work establishes that efficient release site architecture mediates fast dopamine exocytosis.


Asunto(s)
Dopamina , Transmisión Sináptica , Cuerpo Estriado , Dopamina/metabolismo , Exocitosis , Sinapsis/metabolismo
14.
Neurooncol Adv ; 3(1): vdab140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34647026

RESUMEN

BACKGROUND: Pharmaceutical intervention in the CNS is hampered by the shielding function of the blood-brain barrier (BBB). To induce clinical anesthesia, general anesthetics such as isoflurane readily penetrate the BBB. Here, we investigated whether isoflurane can be utilized for therapeutic drug delivery. METHODS: Barrier function in primary endothelial cells was evaluated by transepithelial/transendothelial electrical resistance, and nanoscale STED and SRRF microscopy. In mice, BBB permeability was quantified by extravasation of several fluorescent tracers. Mouse models including the GL261 glioma model were evaluated by MRI, immunohistochemistry, electron microscopy, western blot, and expression analysis. RESULTS: Isoflurane enhances BBB permeability in a time- and concentration-dependent manner. We demonstrate that, mechanistically, isoflurane disturbs the organization of membrane lipid nanodomains and triggers caveolar transport in brain endothelial cells. BBB tightness re-establishes directly after termination of anesthesia, providing a defined window for drug delivery. In a therapeutic glioblastoma trial in mice, simultaneous exposure to isoflurane and cytotoxic agent improves efficacy of chemotherapy. CONCLUSIONS: Combination therapy, involving isoflurane-mediated BBB permeation with drug administration has far-reaching therapeutic implications for CNS malignancies.

15.
Neuron ; 50(4): 575-87, 2006 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-16701208

RESUMEN

The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.


Asunto(s)
Glicina/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/deficiencia , Ácido gamma-Aminobutírico/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Glutamato Descarboxilasa/metabolismo , Immunoblotting , Isoenzimas/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Fenotipo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Simportadores/metabolismo , Cotransportadores de K Cl
16.
Cell Rep ; 30(10): 3261-3269.e4, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160535

RESUMEN

Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle priming proteins of the CAPS and Munc13 families to shape short-term plasticity in vitro, but the relevance of this phenomenon for information processing in the intact brain is unknown. By combining sensory stimulation with in vivo patch-clamp recordings in anesthetized mice, we show that genetic deletion of CAPS-1 in thalamic neurons results in more rapid adaptation of sensory-evoked subthreshold responses in layer 4 neurons of the primary visual cortex. Optogenetic experiments in acute brain slices further reveal that the enhanced adaptation is caused by more pronounced short-term synaptic depression. Our data indicate that neurons engage CAPS-family priming proteins to shape short-term plasticity for optimal sensory information transfer between thalamic and cortical neurons in the intact brain in vivo.


Asunto(s)
Adaptación Ocular , Proteínas de Unión al Calcio/metabolismo , Potenciales Evocados/fisiología , Proteínas del Tejido Nervioso/metabolismo , Sensación , Vesículas Sinápticas/metabolismo , Corteza Visual/fisiología , Animales , Eliminación de Gen , Ratones Noqueados , Neuronas/metabolismo , Transmisión Sináptica
17.
iScience ; 23(6): 101203, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32516721

RESUMEN

Leukocyte common antigen-related receptor tyrosine phosphatases (LAR-RPTPs) are evolutionarily conserved presynaptic organizers. The synaptic role of vertebrate LAR-RPTPs in vivo, however, remains unclear. In the current study, we analyzed the synaptic role of PTPσ using newly generated, single conditional knockout (cKO) mice targeting PTPσ. We found that the number of synapses was reduced in PTPσ cKO cultured neurons in association with impaired excitatory synaptic transmission, abnormal vesicle localization, and abnormal synaptic ultrastructure. Strikingly, loss of presynaptic PTPσ reduced neurotransmitter release prominently at excitatory synapses, concomitant with drastic reductions in excitatory innervations onto postsynaptic target areas in vivo. Furthermore, loss of presynaptic PTPσ in hippocampal CA1 pyramidal neurons had no impact on postsynaptic glutamate receptor responses in subicular pyramidal neurons. Postsynaptic PTPσ deletion had no effect on excitatory synaptic strength. Taken together, these results demonstrate that PTPσ is a bona fide presynaptic adhesion molecule that controls neurotransmitter release and excitatory inputs.

18.
BMC Biol ; 6: 37, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18782446

RESUMEN

BACKGROUND: Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. RESULTS: We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses. CONCLUSION: We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases.


Asunto(s)
Eritropoyetina/farmacología , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Electrofisiología , Hipocampo/fisiología , Immunoblotting , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/fisiología , Ratones , Microscopía Confocal , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología
19.
Front Mol Neurosci ; 12: 249, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787876

RESUMEN

Neurotransmitter release is mediated by an evolutionarily conserved machinery. The synaptic vesicle (SV) associated protein Mover/TPRGL/SVAP30 does not occur in all species and all synapses. Little is known about its molecular properties and how it may interact with the conserved components of the presynaptic machinery. Here, we show by deletion analysis that regions required for homomeric interaction of Mover are distributed across the entire molecule, including N-terminal, central and C-terminal regions. The same regions are also required for the accumulation of Mover in presynaptic terminals of cultured neurons. Mutating two phosphorylation sites in N-terminal regions did not affect these properties. In contrast, a point mutation in the predicted Calmodulin (CaM) binding sequence of Mover abolished both homomeric interaction and presynaptic targeting. We show that this sequence indeed binds Calmodulin, and that recombinant Mover increases Calmodulin signaling upon heterologous expression. Our data suggest that presynaptic accumulation of Mover requires homomeric interaction mediated by regions distributed across large areas of the protein, and corroborate the hypothesis that Mover functionally interacts with Calmodulin signaling.

20.
Cell Rep ; 27(7): 2212-2228.e7, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091457

RESUMEN

iPSC-derived human neurons are expected to revolutionize studies on brain diseases, but their functional heterogeneity still poses a problem. Key sources of heterogeneity are the different cell culture systems used. We show that an optimized autaptic culture system, with single neurons on astrocyte feeder islands, is well suited to culture, and we analyze human iPSC-derived neurons in a standardized, systematic, and reproducible manner. Using classically differentiated and transcription factor-induced human glutamatergic and GABAergic neurons, we demonstrate that key features of neuronal morphology and function, including dendrite structure, synapse number, membrane properties, synaptic transmission, and short-term plasticity, can be assessed with substantial throughput and reproducibility. We propose our optimized autaptic culture system as a tool to study functional features of human neurons, particularly in the context of disease phenotypes and experimental therapy.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Neuronas GABAérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Astrocitos/citología , Astrocitos/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Dendritas/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Neuronas GABAérgicas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Ratas Wistar , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA