Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell ; 81(9): 1859-1860, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33961773

RESUMEN

Daniels et al. (2021) and Jourdain et al. (2021) identify LUC7L2 as a component of the U1 snRNP capable of reprogramming cellular metabolism through changes in alternative pre-mRNA splicing.


Asunto(s)
Empalme Alternativo , Neoplasias , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
2.
BMC Biol ; 21(1): 287, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066609

RESUMEN

Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.


Asunto(s)
Longevidad , Senoterapéuticos , Humanos , Ejercicio Físico , Envejecimiento
3.
Mol Cell Proteomics ; 20: 100126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34332123

RESUMEN

Oral microbiome influences human health, specifically prediabetes and type 2 diabetes (Pre-DM/DM) and periodontal diseases (PDs), through complex microbial interactions. To explore these relations, we performed 16S rDNA sequencing, metabolomics, lipidomics, and proteomics analyses on supragingival dental plaque collected from individuals with Pre-DM/DM (n = 39), Pre-DM/DM and PD (n = 37), PD alone (n = 11), or neither (n = 10). We identified on average 2790 operational taxonomic units and 2025 microbial and host proteins per sample and quantified 110 metabolites and 415 lipids. Plaque samples from Pre-DM/DM patients contained higher abundance of Fusobacterium and Tannerella than plaques from metabolically healthy patients. Phosphatidylcholines, plasmenyl phosphatidylcholines, ceramides containing non-OH fatty acids, and host proteins related to actin filament rearrangement were elevated in plaques from PD versus non-PD samples. Cross-omic correlation analysis enabled the detection of a strong association between Lautropia and monomethyl phosphatidylethanolamine (PE-NMe), which is striking because synthesis of PE-NMe is uncommon in oral bacteria. Lipidomics analysis of in vitro cultures of Lautropia mirabilis confirmed the synthesis of PE-NMe by the bacteria. This comprehensive analysis revealed a novel microbial metabolic pathway and significant associations of host-derived proteins with PD.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderiaceae/metabolismo , Placa Dental/química , Placa Dental/microbiología , Diabetes Mellitus Tipo 2/microbiología , Enfermedades Periodontales/microbiología , Adulto , Anciano , Burkholderiaceae/genética , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Proteómica , ARN Ribosómico 16S , Adulto Joven
4.
Mol Cell Proteomics ; 14(11): 2922-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26392051

RESUMEN

The nematode Caenorhabditis elegans is an important model organism for biomedical research. We previously described NeuCode stable isotope labeling by amino acids in cell culture (SILAC), a method for accurate proteome quantification with potential for multiplexing beyond the limits of traditional stable isotope labeling by amino acids in cell culture. Here we apply NeuCode SILAC to profile the proteomic and phosphoproteomic response of C. elegans to two potent members of the ascaroside family of nematode pheromones. By consuming labeled E. coli as part of their diet, C. elegans nematodes quickly and easily incorporate the NeuCode heavy lysine isotopologues by the young adult stage. Using this approach, we report, at high confidence, one of the largest proteomic and phosphoproteomic data sets to date in C. elegans: 6596 proteins at a false discovery rate ≤ 1% and 6620 phosphorylation isoforms with localization probability ≥75%. Our data reveal a post-translational signature of pheromone sensing that includes many conserved proteins implicated in longevity and response to stress.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/efectos de los fármacos , Glucolípidos/farmacología , Feromonas/química , Fosfoproteínas/química , Procesamiento Proteico-Postraduccional , Proteoma/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Proteínas de Caenorhabditis elegans/metabolismo , Escherichia coli/química , Cadena Alimentaria , Marcaje Isotópico/métodos , Lisina/química , Lisina/metabolismo , Datos de Secuencia Molecular , Feromonas/aislamiento & purificación , Feromonas/metabolismo , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Proteoma/aislamiento & purificación , Proteoma/metabolismo , Proteómica/métodos
5.
Neurobiol Dis ; 89: 1-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26826269

RESUMEN

Over-expression of mutant copper, zinc superoxide dismutase (SOD) in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20 years has extended lifespan by more than a few weeks. The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically human CCS causes mice co-expressing mutant SOD to die within two weeks of birth. Hypothesizing that co-expression of CCS created copper deficiency in spinal cord, we treated these pups with the PET-imaging agent CuATSM, which is known to deliver copper into the CNS within minutes. CuATSM prevented the early mortality of CCSxSOD mice, while markedly increasing Cu, Zn SOD protein in their ventral spinal cord. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18 months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within 3 months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression. All ALS patients also express human CCS, raising the hope that familial SOD ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Cobre/administración & dosificación , Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Estimación de Kaplan-Meier , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Superóxido Dismutasa/genética
6.
Proc Natl Acad Sci U S A ; 110(12): E1102-11, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487751

RESUMEN

Oxidative stress is a widely recognized cause of cell death associated with neurodegeneration, inflammation, and aging. Tyrosine nitration in these conditions has been reported extensively, but whether tyrosine nitration is a marker or plays a role in the cell-death processes was unknown. Here, we show that nitration of a single tyrosine residue on a small proportion of 90-kDa heat-shock protein (Hsp90), is sufficient to induce motor neuron death by the P2X7 receptor-dependent activation of the Fas pathway. Nitrotyrosine at position 33 or 56 stimulates a toxic gain of function that turns Hsp90 into a toxic protein. Using an antibody that recognizes the nitrated Hsp90, we found immunoreactivity in motor neurons of patients with amyotrophic lateral sclerosis, in an animal model of amyotrophic lateral sclerosis, and after experimental spinal cord injury. Our findings reveal that cell death can be triggered by nitration of a single protein and highlight nitrated Hsp90 as a potential target for the development of effective therapies for a large number of pathologies.


Asunto(s)
Muerte Celular/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Ácido Peroxinitroso/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Ratas , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Tirosina/metabolismo , Receptor fas/metabolismo
7.
J Neurosci ; 34(23): 8021-31, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899723

RESUMEN

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuronas Motoras/efectos de los fármacos , Mutación/genética , Compuestos Organometálicos/administración & dosificación , Superóxido Dismutasa/genética , Tiosemicarbazonas/administración & dosificación , Administración Oral , Factores de Edad , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas de Transporte de Catión/genética , Cromatografía en Gel , Complejos de Coordinación , Transportador de Cobre 1 , Modelos Animales de Enfermedad , Humanos , Locomoción/efectos de los fármacos , Locomoción/genética , Ratones , Ratones Transgénicos , Fenotipo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
8.
Anal Chem ; 86(5): 2314-9, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24475910

RESUMEN

The ability to acquire highly accurate quantitative data is an increasingly important part of any proteomics experiment, whether shotgun or top-down approaches are used. We recently developed a quantitation strategy for peptides based on neutron encoding, or NeuCode SILAC, which uses closely spaced heavy isotope-labeled amino acids and high-resolution mass spectrometry to provide quantitative data. We reasoned that the strategy would also be applicable to intact proteins and could enable robust, multiplexed quantitation for top-down experiments. We used yeast lysate labeled with either (13)C6(15)N2-lysine or (2)H8-lysine, isotopologues of lysine that are spaced 36 mDa apart. Proteins having such close spacing cannot be distinguished during a medium resolution scan, but upon acquiring a high-resolution scan, the two forms of the protein with each amino acid are resolved and the quantitative information revealed. An additional benefit NeuCode SILAC provides for top down is that the spacing of the isotope peaks indicates the number of lysines present in the protein, information that aids in identification. We used NeuCode SILAC to quantify several hundred isotope distributions, manually identify and quantify proteins from 1:1, 3:1, and 5:1 mixed ratios, and demonstrate MS(2)-based quantitation using ETD.


Asunto(s)
Neutrones , Proteómica , Espectrometría de Masas , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-37804247

RESUMEN

The geroscience hypothesis suggests that addressing the fundamental mechanisms driving aging biology will prevent or mitigate the onset of multiple chronic diseases, for which the largest risk factor is advanced age. Research that investigates the root causes of aging is therefore of critical importance given the rising healthcare burden attributable to age-related diseases. The third annual Midwest Aging Consortium symposium was convened as a showcase of such research performed by investigators from institutions across the Midwestern United States. This report summarizes the work presented during a virtual conference across topics in aging biology, including immune function in the lung-particularly timely given the Corona Virus Immune Disease-2019 pandemic-along with the role of metabolism and nutrient-regulated pathways in cellular function with age, the influence of senescence on stem cell function and inflammation, and our evolving understanding of the mechanisms underlying observation of sex dimorphism in aging-related outcomes. The symposium focused on early-stage and emerging investigators, while including keynote presentations from leaders in the biology of aging field, highlighting the diversity and strength of aging research in the Midwest.


Asunto(s)
Envejecimiento , Afecciones Crónicas Múltiples , Humanos , Envejecimiento/fisiología , Inflamación , Pulmón , Gerociencia
10.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808866

RESUMEN

The brain is a high energy tissue, and the cell types of which it is comprised are distinct in function and in metabolic requirements. The transcriptional co-activator PGC-1a is a master regulator of mitochondrial function and is highly expressed in the brain; however, its cell-type specific role in regulating metabolism has not been well established. Here, we show that PGC-1a is responsive to aging and that expression of the neuron specific PGC-1a isoform allows for specialization in metabolic adaptation. Transcriptional profiles of the cortex from male mice show an impact of age on immune, inflammatory, and neuronal functional pathways and a highly integrated metabolic response that is associated with decreased expression of PGC-1a. Proteomic analysis confirms age-related changes in metabolism and further shows changes in ribosomal and RNA splicing pathways. We show that neurons express a specialized PGC-1a isoform that becomes active during differentiation from stem cells and is further induced during the maturation of isolated neurons. Neuronal but not astrocyte PGC-1a responds robustly to inhibition of the growth sensitive kinase GSK3b, where the brain specific promoter driven dominant isoform is repressed. The GSK3b inhibitor lithium broadly reprograms metabolism and growth signaling, including significantly lower expression of mitochondrial and ribosomal pathway genes and suppression of growth signaling, which are linked to changes in mitochondrial function and neuronal outgrowth. In vivo, lithium treatment significantly changes the expression of genes involved in cortical growth, endocrine, and circadian pathways. These data place the GSK3b/PGC-1a axis centrally in a growth and metabolism network that is directly relevant to brain aging.

11.
J Am Chem Soc ; 134(6): 2898-901, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22283158

RESUMEN

Bioorthogonal ligation methods with improved reaction rates and less obtrusive components are needed for site-specifically labeling proteins without catalysts. Currently no general method exists for in vivo site-specific labeling of proteins that combines fast reaction rate with stable, nontoxic, and chemoselective reagents. To overcome these limitations, we have developed a tetrazine-containing amino acid, 1, that is stable inside living cells. We have site-specifically genetically encoded this unique amino acid in response to an amber codon allowing a single 1 to be placed at any location in a protein. We have demonstrated that protein containing 1 can be ligated to a conformationally strained trans-cyclooctene in vitro and in vivo with reaction rates significantly faster than most commonly used labeling methods.


Asunto(s)
Química/métodos , Ciclooctanos/química , Ingeniería Genética/métodos , Piridinas/química , Aminoácidos/química , Catálisis , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Methanococcus/metabolismo , Modelos Químicos , Conformación Molecular , Proteínas/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Tirosina-ARNt Ligasa/química
12.
Science ; 375(6581): 620-621, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143311

RESUMEN

Reverse translation of a human caloric restriction trial finds an immunometabolic regulator.


Asunto(s)
Restricción Calórica , Humanos
13.
Sci Rep ; 12(1): 9960, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705631

RESUMEN

Metabolic syndrome increases risk of complicating co-morbidities. Current clinical indicators reflect established metabolic impairment, preventing earlier intervention strategies. Here we show that circulating sphingolipids are altered in the very early stages of insulin resistance development. The study involved 16 paired overweight but healthy monkeys, one-half of which spontaneously developed metabolic syndrome over the course of 2 years. Importantly, animals did not differ in adiposity and were euglycemic throughout the study period. Using mass spectrometry, circulating sphingolipids, including ceramides and sphingomyelins, were detected and quantified for healthy and impaired animals at both time points. At time of diagnosis, several ceramides were significantly different between healthy and impaired animals. Correlation analysis revealed differences in the interactions among ceramides in impaired animals at diagnosis and pre-diagnosis when animals were clinically indistinguishable from controls. Furthermore, correlations between ceramides and early-stage markers of insulin resistance, diacylglycerols and non-esterified fatty acids, were distinct for healthy and impaired states. Regression analysis identifies coordinated changes in lipid handling across lipid classes as animals progress from healthy to insulin resistant. Correlations between ceramides and the adipose-derived adipokine adiponectin were apparent in healthy animals but not in the metabolically impaired animals, even in advance of loss in insulin sensitivity. These data suggest that circulating ceramides are clinically relevant in identifying disease risk independent of differences in adiposity, and may be important in devising preventative strategies.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Animales , Ceramidas , Macaca mulatta , Síndrome Metabólico/etiología , Obesidad/metabolismo , Esfingolípidos
14.
Anal Biochem ; 415(1): 52-8, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21453670

RESUMEN

Metals are key cofactors for many proteins, yet quantifying the metals bound to specific proteins is a persistent challenge in vivo. We have developed a rapid and sensitive method using electrospray ionization mass spectrometry to measure Cu,Zn superoxide dismutase (SOD1) directly from the spinal cord of SOD1-overexpressing transgenic rats. Metal dyshomeostasis has been implicated in motor neuron death in amyotrophic lateral sclerosis (ALS). Using the assay, SOD1 was directly measured from 100 µg of spinal cord, allowing for anatomical quantitation of apo, metal-deficient, and holo SOD1. SOD1 was bound on a C(4) Ziptip that served as a disposable column, removing interference by physiological salts and lipids. SOD1 was eluted with 30% acetonitrile plus 100 µM formic acid to provide sufficient hydrogen ions to ionize the protein without dislodging metals. SOD1 was quantified by including bovine SOD1 as an internal standard. SOD1 could be measured in subpicomole amounts and resolved to within 2 Da of the predicted parent mass. The methods can be adapted to quantify modifications to other proteins in vivo that can be resolved by mass spectrometry.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray/métodos , Médula Espinal/enzimología , Superóxido Dismutasa/análisis , Animales , Cobre/metabolismo , Ratas , Ratas Transgénicas , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Zinc/metabolismo
15.
Cell Metab ; 32(3): 323-325, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877686

RESUMEN

In this issue of Cell Metabolism, Asadi Shahmirzadi et al. (2020) demonstrate that late-onset dietary supplementation with calcium alpha-ketoglutarate results in increased survival, compressed morbidity, and reduced frailty in mice. The study provides further evidence for critical links between metabolism, inflammation, and aging.


Asunto(s)
Ácidos Cetoglutáricos , Longevidad , Envejecimiento , Animales , Inflamación , Ratones , Morbilidad
16.
Cell Syst ; 10(2): 156-168.e5, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31982367

RESUMEN

Caloric restriction (CR) improves survival in nonhuman primates and delays the onset of age-related morbidities including sarcopenia, which is characterized by the age-related loss of muscle mass and function. A shift in metabolism anticipates the onset of muscle-aging phenotypes in nonhuman primates, suggesting a potential role for metabolism in the protective effects of CR. Here, we show that CR induced profound changes in muscle composition and the cellular metabolic environment. Bioinformatic analysis linked these adaptations to proteostasis, RNA processing, and lipid synthetic pathways. At the tissue level, CR maintained contractile content and attenuated age-related metabolic shifts among individual fiber types with higher mitochondrial activity, altered redox metabolism, and smaller lipid droplet size. Biometric and metabolic rate data confirm preserved metabolic efficiency in CR animals that correlated with the attenuation of age-related muscle mass and physical activity. These data suggest that CR-induced reprogramming of metabolism plays a role in delayed aging of skeletal muscle in rhesus monkeys.


Asunto(s)
Sarcopenia/prevención & control , Adulto , Animales , Restricción Calórica , Humanos , Macaca mulatta , Masculino , Medicina Molecular
17.
Nat Commun ; 10(1): 3929, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477734

RESUMEN

AT-1/SLC33A1 is a key member of the endoplasmic reticulum (ER) acetylation machinery, transporting acetyl-CoA from the cytosol into the ER lumen where acetyl-CoA serves as the acetyl-group donor for Nε-lysine acetylation. Dysfunctional ER acetylation, as caused by heterozygous or homozygous mutations as well as gene duplication events of AT-1/SLC33A1, has been linked to both developmental and degenerative diseases. Here, we investigate two models of AT-1 dysregulation and altered acetyl-CoA flux: AT-1S113R/+ mice, a model of AT-1 haploinsufficiency, and AT-1 sTg mice, a model of AT-1 overexpression. The animals display distinct metabolic adaptation across intracellular compartments, including reprogramming of lipid metabolism and mitochondria bioenergetics. Mechanistically, the perturbations to AT-1-dependent acetyl-CoA flux result in global and specific changes in both the proteome and the acetyl-proteome (protein acetylation). Collectively, our results suggest that AT-1 acts as an important metabolic regulator that maintains acetyl-CoA homeostasis by promoting functional crosstalk between different intracellular organelles.


Asunto(s)
Acetilcoenzima A/metabolismo , Citosol/metabolismo , Metabolismo de los Lípidos , Proteínas de Transporte de Membrana/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Acetilación , Animales , Retículo Endoplásmico/metabolismo , Haploinsuficiencia , Hígado/citología , Hígado/metabolismo , Lisina/metabolismo , Proteínas de Transporte de Membrana/genética , Ratones Noqueados , Ratones Transgénicos
18.
Aging Cell ; 18(5): e12999, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31267675

RESUMEN

Deleterious changes in energy metabolism have been linked to aging and disease vulnerability, while activation of mitochondrial pathways has been linked to delayed aging by caloric restriction (CR). The basis for these associations is poorly understood, and the scope of impact of mitochondrial activation on cellular function has yet to be defined. Here, we show that mitochondrial regulator PGC-1a is induced by CR in multiple tissues, and at the cellular level, CR-like activation of PGC-1a impacts a network that integrates mitochondrial status with metabolism and growth parameters. Transcriptional profiling reveals that diverse functions, including immune pathways, growth, structure, and macromolecule homeostasis, are responsive to PGC-1a. Mechanistically, these changes in gene expression were linked to chromatin remodeling and RNA processing. Metabolic changes implicated in the transcriptional data were confirmed functionally including shifts in NAD metabolism, lipid metabolism, and membrane lipid composition. Delayed cellular proliferation, altered cytoskeleton, and attenuated growth signaling through post-transcriptional and post-translational mechanisms were also identified as outcomes of PGC-1a-directed mitochondrial activation. Furthermore, in vivo in tissues from a genetically heterogeneous mouse population, endogenous PGC-1a expression was correlated with this same metabolism and growth network. These data show that small changes in metabolism have broad consequences that arguably would profoundly alter cell function. We suggest that this PGC-1a sensitive network may be the basis for the association between mitochondrial function and aging where small deficiencies precipitate loss of function across a spectrum of cellular activities.


Asunto(s)
Restricción Calórica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Células 3T3-L1 , Animales , Células Cultivadas , Senescencia Celular , Metabolismo Energético , Ratones , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
19.
Cell Metab ; 27(3): 677-688.e5, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514073

RESUMEN

Caloric restriction (CR) extends lifespan and delays the onset of age-related disorders in diverse species. Metabolic regulatory pathways have been implicated in the mechanisms of CR, but the molecular details have not been elucidated. Here, we show that CR engages RNA processing of genes associated with a highly integrated reprogramming of hepatic metabolism. We conducted molecular profiling of liver biopsies collected from adult male rhesus monkeys (Macaca mulatta) at baseline and after 2 years on control or CR (30% restricted) diet. Quantitation of over 20,000 molecules from the hepatic transcriptome, proteome, and metabolome indicated that metabolism and RNA processing are major features of the response to CR. Predictive models identified lipid, branched-chain amino acid, and short-chain carbon metabolic pathways, with alternate transcript use for over half of the genes in the CR network. We conclude that RNA-based mechanisms are central to the CR response and integral in metabolic reprogramming.


Asunto(s)
Restricción Calórica , Hígado/metabolismo , Procesamiento Postranscripcional del ARN , ARN/metabolismo , Envejecimiento/metabolismo , Animales , Expresión Génica , Macaca mulatta , Masculino
20.
Science ; 373(6556): 738-739, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385381
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA