Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Anat ; 245(3): 501-509, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39010676

RESUMEN

Postmortem human subject (PMHS) studies are essential to brain injury research in motor vehicle safety. However, postmortem deterioration reduces the similarity between postmortem test results and in vivo response in material testing of brain tissue and in biomechanical testing of the whole head. This pilot study explores the effect of potential preservatives on brain tissue breakdown to identify promising preservatives that warrant further investigation. To identify preservatives with potential to slow postmortem degradation, samples from an initial PMHS were refrigerated at 10°C to qualitatively compare tissue breakdown from 58 to 152 h postmortem after storage in candidate solutions. On brain tissue samples from a second PMHS, compressive stiffness was measured on six samples immediately after harvest for comparison to the stiffness of 23 samples that were stored at 10°C in candidate solutions for 24 h after harvest. The candidate solutions were artificial cerebrospinal fluid (ACSF) without preservatives; ACSF with a combination of antibiotics and antifungal agents; ACSF with added sodium bicarbonate; and ACSF with both the antibiotic/antifungal combination and sodium bicarbonate. Results were analyzed using multiple linear regression of specimen stiffness on harvest lobe and storage solution to investigate potential differences in tissue stiffness. Qualitative evaluation suggested that samples stored in a solution that contained both the antibiotic/antifungal combination and sodium bicarbonate exhibited less evidence of tissue breakdown than the samples stored without preservatives or with only one of those preservatives. In compression testing, samples tested immediately after harvest were significantly stiffer than samples tested after 24 h of storage at 10°C in ACSF (difference: -0.27 N/mm, 95% confidence interval (CI): -0.50, -0.05) or ACSF with antibiotics/antifungal agents (difference: -0.32 N/mm, 95% CI: -0.59, -0.04), controlling for harvest lobe. In contrast, the stiffness of samples tested after storage in either solution containing sodium bicarbonate was not significantly different from the stiffness of samples tested at harvest. There was no significant overall difference in the mean tissue stiffness between samples from the frontal and parietal lobes, controlling for storage solution. Given the importance of PMHS studies to brain injury research, any strategy that shows promise for helping to maintain in vivo brain material properties has the potential to improve understanding of brain injury mechanisms and tolerance to head injury and warrants further investigation. These pilot study results suggest that sodium bicarbonate has the potential to reduce the deterioration of brain tissue in biomechanical testing. The results motivate further evaluation of sodium bicarbonate as a preservative for biomechanical testing using additional test subjects, more comprehensive material testing, and evaluation under a broader set of test conditions including in whole-head testing. The effect of antibiotics and antifungal agents on brain tissue stiffness was minimal but may have been limited by the cold storage conditions in this study. Further exploration of the potential for microbial agents to preserve tissue postmortem would benefit from evaluation of the effects of storage temperature.


Asunto(s)
Encéfalo , Proyectos Piloto , Humanos , Fenómenos Biomecánicos , Encéfalo/efectos de los fármacos , Cambios Post Mortem , Bicarbonato de Sodio/farmacología , Masculino , Anciano
2.
Traffic Inj Prev ; 24(sup1): S23-S31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267001

RESUMEN

OBJECTIVE: In 2020, 17% of all crash fatalities were individuals aged 65 years or older. Crash data also revealed that for older occupants, thoracic related injuries are among the leading causes of fatality. Historically, the majority of near-side impact postmortem human subjects (PMHS) studies used a generic load wall to capture external loads that were applied to PMHS. While these data were helpful in documenting biofidelity, they did not represent a realistic response an occupant would undergo in a near-side crash. The objective of this research was to test small, elderly female PMHS in a repeatable, realistic near-side impact crash scenario to investigate current injury criteria as they relate to this vulnerable population. METHOD: Ten small, elderly PMHS were subjected to a realistic near-side impact loading condition. The PMHS were targeted to be elderly females age 60+, approximately 5th percentile in height and weight, with osteopenic areal bone mineral density. Each subject was seated on a mass-production seat, equipped with a side airbag and standard three-point restraint with a pretensioner. Other boundary conditions included an intruding driver's side door. PMHS instrumentation included strain gages on ribs 3-10 bilaterally to identify fracture timing. Two chestbands were used to measure chest deflection, one at the level of the axilla and one at the level of the xiphoid process. RESULTS: Injuries observed included rib fractures, particularly on the struck side, and in multiple cases a flail chest was observed. Eight of ten subjects resulted in AIS3+ thoracic injuries, despite previously tested ATDs predicting less than a 10% chance of AIS3+ injury. Subjects crossed the threshold for AIS3 injury in the range of only 1% - 9% chest compression. Additionally, mechanisms of injury varied, as some injuries were incurred by door interactions while others came during airbag interactions. CONCLUSIONS: This research points to two areas of concern that likely require further analysis: (1) the appropriateness of potentially oversimplified PMHS testing to establish injury thresholds and define injury criteria for complicated crash scenarios; (2) the importance of identifying the precise timing of injuries to better understand the effect of current passive restraint systems.


Asunto(s)
Airbags , Fracturas de las Costillas , Traumatismos Torácicos , Anciano , Femenino , Humanos , Accidentes de Tránsito , Airbags/efectos adversos , Fenómenos Biomecánicos , Cadáver , Fracturas de las Costillas/epidemiología , Fracturas de las Costillas/etiología , Traumatismos Torácicos/epidemiología , Traumatismos Torácicos/etiología , Persona de Mediana Edad
3.
Traffic Inj Prev ; 18(sup1): S136-S141, 2017 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-28332863

RESUMEN

OBJECTIVE: This study compares the responses of male and female WorldSID dummies with post mortem human subject (PMHS) responses in full-scale vehicle tests. METHODS: Tests were conducted according to the FMVSS-214 protocols and using the U.S. Side Impact New Car Assessment Program change in velocity to match PMHS experiments, published earlier. Moving deformable barrier (MDB) tests were conducted with the male and female surrogates in the left front and left rear seats. Pole tests were performed with the male surrogate in the left front seat. Three-point belt restraints were used. Sedan-type vehicles were used from the same manufacturer with side airbags. The PMHS head was instrumented with a pyramid-shaped nine-axis accelerometer package, with angular velocity transducers on the head. Accelerometers and angular velocity transducers were secured to T1, T6, and T12 spinous processes and sacrum. Three chest bands were secured around the upper, middle, and lower thoraces. Dummy instrumentation included five infrared telescoping rods for assessment of chest compression (IR-TRACC) and a chest band at the first abdomen rib, head angular velocity transducer, and head, T1, T4, T12, and pelvis accelerometers. RESULTS: Morphological responses of the kinematics of the head, thoracic spine, and pelvis matched in both surrogates for each pair. The peak magnitudes of the torso accelerations were lower for the dummy than for the biological surrogate. The brain rotational injury criterion (BrIC) response was the highest in the male dummy for the MDB test and PMHS. The probability of AIS3+ injuries, based on the head injury criterion, ranged from 3% to 13% for the PMHS and from 3% to 21% for the dummy from all tests. The BrIC-based metrics ranged from 0 to 21% for the biological and 0 to 48% for the dummy surrogates. The deflection profiles from the IR-TRACC sensors were unimodal. The maximum deflections from the chest band placed on the first abdominal rib were 31.7 mm and 25.4 mm for the male and female dummies in the MDB test, and 37.4 mm for the male dummy in the pole test. The maximum deflections computed from the chest band contours at a gauge equivalent to the IR-TRACC location were 25.9 mm and 14.8 mm for the male and female dummies in the MDB test, and 37.4 mm for the male dummy in the pole test. Other data (static vehicle deformation profiles, accelerations histories of different body regions, and chest band contours for the dummy and PMHS) are given in the appendix. CONCLUSIONS: This is the first study to compare the responses of PMHS and male and female dummies in MDB and pole tests, done using the same recent model year vehicles with side airbag and head curtain restraints. The differences between the dummy and PMHS torso accelerations suggest the need for design improvements in the WorldSID dummy. The translation-based metrics suggest low probability of head injury. As the dummy internal sensor underrecorded the peak deflection, multipoint displacement measures are therefore needed for a more accurate quantification of deflection to improve the safety assessment of occupants.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Cadáver , Maniquíes , Aceleración , Fenómenos Biomecánicos , Femenino , Cabeza/fisiología , Humanos , Masculino , Pelvis/fisiología , Reproducibilidad de los Resultados , Costillas/fisiología , Vértebras Torácicas/fisiología , Tórax/fisiología
4.
Stapp Car Crash J ; 59: 1-22, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26660738

RESUMEN

While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading.


Asunto(s)
Aceleración , Accidentes de Tránsito , Automóviles , Cadáver , Cinturones de Seguridad , Traumatismos Torácicos , Escala Resumida de Traumatismos , Acelerometría , Fenómenos Biomecánicos , Humanos , Modelos Biológicos
5.
Stapp Car Crash J ; 55: 281-315, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22869312

RESUMEN

In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al. (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al. or similar as observed by ISO. Twelve PMHS were impacted by a 23 kg pneumatic ram with a 152.4 mmx304.8 mm rectangular face plate at the level of the xyphoid process in either the pure lateral or 30° anterior-to-lateral oblique direction. Because these tests were potentially injurious, only one test per subject was conducted. Normalized responses demonstrate similar characteristics for both lateral and oblique impacts, indicating that it may be reasonable to combine lateral and oblique responses together at these higher speeds to define characteristic PMHS response as was done by ISO. The small number of tests conducted indicates that less chest compression may be required to obtain serious thoracic injury in oblique impacts as compared to lateral impacts at speeds of 4.5 or 5.5 m/s.


Asunto(s)
Aceleración , Accidentes de Tránsito , Traumatismos Torácicos/fisiopatología , Escala Resumida de Traumatismos , Adulto , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Masculino , Modelos Biológicos
6.
Stapp Car Crash J ; 46: 321-51, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17096232

RESUMEN

Thirty-six lateral PMHS sled tests were performed at 6.7 or 8.9 m/s, under rigid or padded loading conditions and with a variety of impact surface geometries. Forces between the simulated vehicle environment and the thorax, abdomen, and pelvis, as well as torso deflections and various accelerations were measured and scaled to the average male. Mean +/- one standard deviation corridors were calculated. PMHS response corridors for force, torso deflection and acceleration were developed. The offset test condition, when partnered with the flat wall condition, forms the basis of a robust battery of tests that can be used to evaluate how an ATD interacts with its environment, and how body regions within the ATD interact with each other.

7.
Stapp Car Crash J ; 46: 477-512, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17096239

RESUMEN

A new biofidelity assessment system is being developed and applied to three side impact dummies: the WorldSID-alpha, the ES-2 and the SID-HIII. This system quantifies (1) the ability of a dummy to load a vehicle as a cadaver does, "External Biofidelity," and (2) the ability of a dummy to replicate those cadaver responses that best predict injury potential, "Internal Biofidelity." The ranking system uses cadaver and dummy responses from head drop tests, thorax and shoulder pendulum tests, and whole body sled tests. Each test condition is assigned a weight factor based on the number of human subjects tested to form the biomechanical response corridor and how well the biofidelity tests represent FMVSS 214, side NCAP (SNCAP) and FMVSS 201 Pole crash environments. For each response requirement, the cumulative variance of the dummy response relative to the mean cadaver response (DCV) and the cumulative variance of the mean cadaver response relative to the mean plus one standard deviation (CCV) are calculated. The ratio of DCV/CCV expresses how well the dummy response duplicates the mean cadaver response: a smaller ratio indicating better biofidelity. For each test condition, the square root is taken of each Response Comparison Value (DCV/CCV), and then these values are averaged and multiplied by the appropriate Test Condition Weight. The weighted and averaged comparison values are then summed and divided by the sum of the Test Condition Weights to obtain a rank for each body region. Each dummy obtains an overall rank for External Biofidelity and an overall rank for Internal Biofidelity comprised of an average of the ranks from each body region. Of the three dummies studied, the selected comparison test data indicate that the WorldSID-alpha prototype dummy demonstrated the best overall External Biofidelity although improvement is needed in all of the dummies to better replicate human kinematics. All three dummies estimate potential injury assessment with similar levels of Internal Biofidelity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA