Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Arch Microbiol ; 205(3): 84, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750497

RESUMEN

Implementing sustainable agricultural land management practices such as no-till (NT) and diversified crops are important for maintaining soil health properties. This study focuses on the soil health of three long-term (44 years) tillage systems, NT, reduced tillage (RT), and conventional tillage (CT), in monoculture winter wheat-fallow (W-F) (Triticum aestivum L.) and wheat-soybean (W-S) (Glycine max (L.) Merrill) rotation. Soil organic carbon (C) was higher in NT than CT in the surface 0-5 cm, but not different in the 5-15 cm, demonstrating SOC stratification on the soil profile. The soil water content was higher in NT followed by RT and CT in the top 0-5 cm. We found an association between increased carbon, aggregation, and AMF biomass. Greater soil aggregation, carbon and AMF were observed in NT at 0-5 cm soil depth. The W-S cropping system had greater soil microbial community composition based on fungi biomass, AMF and fungal to bacteria ratio from phospholipid fatty acid analysis (PLFA). Large macroaggregates were positively correlated with total C and N, microbial biomass, Gram + , and AMF. Soil water content was positively correlated with macroaggregates, total C and N, and AC. No-till increased soil carbon content even after 44 years of cultivation. By implementing conservation tillage systems and diversified crop rotation, soil quality can be improved through greater soil organic C, water content, greater soil structure, and higher AMF biomass than CT practice in the Central Great Plains.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/química , Agricultura , Glycine max , Triticum , Agua , Hongos
2.
Arch Microbiol ; 202(10): 2809-2824, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32747999

RESUMEN

The impact of agricultural land-use on soil microbial community composition and enzyme activity has not been extensively investigated in Ultisols. We investigated soil health parameters by analyzing phospholipid fatty acids (PLFAs), extracellular enzyme activity, C and N stocks, and soil structure. Four land uses were established in a tropical climate region of Brazil: native Cerrado (savanna), monoculture pasture [Urochloa brizantha (Hochst. Ex A. Rich.) R. Webster 'Marandu'], an integrated crop-livestock system (ICLS), and maize (Zea mays)-fallow in a no-tillage system. Soil microbial biomass was 40% higher in the native Cerrado than in the monoculture pasture, ICLS, and no-tillage maize. Soil organic carbon was positively correlated with microbial community composition (MB; gram-; AC; AMF; Fungi; F: B ratio) and enzyme activity (bG, AP, NAG). Large macroaggregates were positively correlated with bG, AP, and AMF. In summary, the native Cerrado had a higher level of carbon at the soil surface and greater soil structure with increased microbial biomass, gram+ bacteria, AMF, fungi, and F:B ratio in a tropical region of Brazil. However, bG and AP enzyme activities were lower in the ICLS and no-till maize at the soil surface (0-5 cm) compared to the native Cerrado. The conversion of native Cerrado to agricultural systems shifted the soil microbial community composition, enzyme activity, C and N, and soil structure of this sandy soil of the Brazilian Cerrado.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Microbiota/fisiología , Microbiología del Suelo , Suelo/química , Agricultura , Bacterias/enzimología , Biomasa , Brasil , Carbono/análisis , Ácidos Grasos/análisis , Hongos/enzimología , Nitrógeno/análisis , Clima Tropical , Zea mays/microbiología
3.
J Environ Qual ; 47(1): 228-237, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29634803

RESUMEN

Switchgrass ( L.) has been promoted as a potential feedstock for cellulosic biofuel in the United States. Switchgrass is known to respond to N fertilizer, but optimal rates remain unclear. Given the potential nonlinear response of nitrous oxide (NO) emissions to N inputs, N additions to switchgrass above optimal levels could have large impacts on the greenhouse gas balance of switchgrass-based biofuel. Additionally, N additions are likely to have large impacts on switchgrass production costs. Yield, N removal, and net returns were measured in switchgrass receiving 0 to 200 kg N ha in Manhattan, KS, from 2012 to 2014. Emissions of NO were measured in the 0- to 150-kg N ha treatments. Total emissions of NO increased from 0.2 to 3.0 kg NO-N ha as N inputs increased from 0 to 150 kg N ha. The 3-yr averages of fertilizer-induced emission factors were 0.7, 2.1, and 2.6% at 50, 100, and 150 kg N ha, respectively. Removal of N at harvest increased linearly with increasing N rate. Switchgrass yields increased with N inputs up to 100 to 150 kg N ha, but the critical N level for maximum yields decreased each year, suggesting that N was being applied in excess at higher N rates. Net returns were maximized at 100 kg N ha at both a high and low urea cost (US$394.71 and $945.91 ha, respectively). These results demonstrate that N inputs were necessary to increase switchgrass productivity, but rates exceeding optimal levels resulted in excessive NO emissions and increased costs for producers.


Asunto(s)
Nitrógeno/metabolismo , Óxido Nitroso/análisis , Panicum , Agricultura , Fertilizantes
4.
J Environ Qual ; 44(2): 305-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26023950

RESUMEN

Synthetic nitrogen fertilizer has been a double-edged sword, greatly improving human nutrition during the 20th century but also posing major human health and environmental challenges for the 21st century. In August 2013, about 160 agronomists, scientists, extension agents, crop advisors, economists, social scientists, farmers, representatives of regulatory agencies and nongovernmental organizations (NGOs), and other agricultural experts gathered to discuss the vexing challenge of how to produce more food to nourish a growing population while minimizing pollution to the environment. This collection of 14 papers authored by conference participants provides a much needed analysis of the many technical, economic, and social impediments to improving nitrogen use efficiency (NUE) in crop and animal production systems. These papers demonstrate that the goals of producing more food with low pollution (Mo Fo Lo Po) will not be achieved by technological developments alone but will also require policies that recognize the economic and social factors affecting farmer decision-making. Take-home lessons from this extraordinary interdisciplinary effort include the need (i) to develop partnerships among private and public sectors to demonstrate the most current, economically feasible, best management NUE practices at local and regional scales; (ii) to improve continuing education to private sector retailers and crop advisers; (iii) to tie nutrient management to performance-based indicators on the farm and in the downwind and downstream environment; and (iv) to restore investments in research, education, extension, and human resources that are essential for developing the interdisciplinary knowledge and innovative skills needed to achieve agricultural sustainability goals.

5.
J Environ Qual ; 43(2): 709-22, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25602672

RESUMEN

Life cycle assessment is the predominant method to compare energy and environmental impacts of agricultural production systems. In this life cycle study, we focused on the comparison of swine manure to synthetic fertilizer as nutrients for corn production in Iowa. Deep pit (DP) and anaerobic lagoon (AL) treatment systems were compared separately, and urea ammonium nitrate (UAN) was chosen as the representative synthetic fertilizer. The two functional units used were fertilization of 1000 kg of corn in a continuous corn system and fertilization of a crop yielding 1000 kg of corn and a crop yielding 298 kg of soybean in a 2-yr corn-soybean rotation. Iowa-specific versions of emission factors and energy use were used when available and compared with Intergovernmental Panel on Climate Change values. Manure was lower than synthetic fertilizer for abiotic depletion and about equal with respect to eutrophication. Synthetic fertilizer was lower than manure for global warming potential (GWP) and acidification. The choice of allocation method and life cycle boundary were important in understanding the context of these results. In the DP system, methane (CH) from housing was the largest contributor to the GWP, accounting for 60% of the total impact. When storage systems were compared, the DP system had 50% less GWP than the AL system. This comparison was due to reduction in CH emissions from the storage system and conservation of nitrogen. Nitrous oxide emissions were the biggest contributor to the GWP of UAN fertilization and the second biggest contributor to the GWP of manure. Monte Carlo and scenario analyses were used to test the robustness of the results and sensitivity to methodology and important impact factors. The available crop-land and associated plant nutrient needs in Iowa was compared with manure production for the current hog population. On a state- or county-wide level, there was generally an excess of available land. On a farm level, there is often an excess of manure, which necessitates long-distance transport.

6.
PLoS One ; 19(4): e0302009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38620042

RESUMEN

Phytoliths of biogenic silica play a vital role in the silicon biogeochemical cycle and occlude a fraction of organic carbon. The location, chemical speciation, and quantification of this carbon within phytoliths have remained elusive due to limited direct experimental evidence. In this work, phytoliths (bilobate morphotype) from the sugarcane stalk epidermis are sectioned with a focused ion beam to produce lamellas (≈10 × 10 µm2 size, <500 nm thickness) and probed by synchrotron scanning transmission X-ray microspectroscopy (≈100-200 nm pixel size; energies near the silicon and carbon K-absorption edges). Analysis of the spectral image stacks reveals the complementarity of the silica and carbon spatial distributions, with carbon found at the borders of the lamellas, in islands within the silica, and dispersed in extended regions that can be described as a mixed silica-carbonaceous matrix. Carbon spectra are assigned mainly to lignin-like compounds as well as to proteins. Carbon contents of 3-14 wt.% are estimated from the spectral maps of four distinct phytolith lamellas. The results provide unprecedented spatial and chemical information on the carbon in phytoliths obtained without interference from wet-chemical digestion.


Asunto(s)
Dióxido de Silicio , Silicio , Dióxido de Silicio/química , Rayos X , Carbono/análisis , Sincrotrones
7.
bioRxiv ; 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37987001

RESUMEN

Background: Global change has accelerated the nitrogen cycle. Soil nitrogen stock degradation by microbes leads to the release of various gases, including nitrous oxide (N2O), a potent greenhouse gas. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) participate in the soil nitrogen cycle, producing N2O. There are outstanding questions regarding the impact of environmental processes such as precipitation and land use legacy on AOA and AOB structurally, compositionally, and functionally. To answer these questions, we analyzed field soil cores and soil monoliths under varying precipitation profiles and land legacies. Results: We resolved 28 AOA and AOB metagenome assembled genomes (MAGs) and found that they were significantly higher in drier environments and differentially abundant in different land use legacies. We further dissected AOA and AOB functional potentials to understand their contribution to nitrogen transformation capabilities. We identified the involvement of stress response genes, differential metabolic functional potentials, and subtle population dynamics under different environmental parameters for AOA and AOB. We observed that AOA MAGs lacked a canonical membrane-bound electron transport chain and F-type ATPase but possessed A/A-type ATPase, while AOB MAGs had a complete complex III module and F-type ATPase, suggesting differential survival strategies of AOA and AOB. Conclusions: The outcomes from this study will enable us to comprehend how drought-like environments and land use legacies could impact AOA- and AOB-driven nitrogen transformations in soil.

8.
Nat Commun ; 13(1): 7233, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433980

RESUMEN

Climate extremes cause significant winter wheat yield loss and can cause much greater impacts than single extremes in isolation when multiple extremes occur simultaneously. Here we show that compound hot-dry-windy events (HDW) significantly increased in the U.S. Great Plains from 1982 to 2020. These HDW events were the most impactful drivers for wheat yield loss, accounting for a 4% yield reduction per 10 h of HDW during heading to maturity. Current HDW trends are associated with yield reduction rates of up to 0.09 t ha-1 per decade and HDW variations are atmospheric-bridged with the Pacific Decadal Oscillation. We quantify the "yield shock", which is spatially distributed, with the losses in severely HDW-affected areas, presumably the same areas affected by the Dust Bowl of the 1930s. Our findings indicate that compound HDW, which traditional risk assessments overlooked, have significant implications for the U.S. winter wheat production and beyond.


Asunto(s)
Triticum , Viento , Estaciones del Año , Clima , Cambio Climático
9.
Ecol Lett ; 12(5): 452-61, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19320689

RESUMEN

We examined the role of arbuscular mycorrhizal fungi (AMF) in ecosystems using soil aggregate stability and C and N storage as representative ecosystem processes. We utilized a wide gradient in AMF abundance, obtained through long-term (17 and 6 years) large-scale field manipulations. Burning and N-fertilization increased soil AMF hyphae, glomalin-related soil protein (GRSP) pools and water-stable macroaggregates while fungicide applications reduced AMF hyphae, GRSP and water-stable macroaggregates. We found that AMF abundance was a surprisingly dominant factor explaining the vast majority of variability in soil aggregation. This experimental field study, involving long-term diverse management practices of native multispecies prairie communities, invariably showed a close positive correlation between AMF hyphal abundance and soil aggregation, and C and N sequestration. This highly significant linear correlation suggests there are serious consequences to the loss of AMF from ecosystems.


Asunto(s)
Carbono/química , Ecosistema , Micorrizas/fisiología , Microbiología del Suelo , Suelo/análisis , Análisis de Varianza , Biomasa , Kansas , Nitrógeno/química
10.
mSystems ; 4(4)2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186334

RESUMEN

Climate change is causing shifts in precipitation patterns in the central grasslands of the United States, with largely unknown consequences on the collective physiological responses of the soil microbial community, i.e., the metaphenome. Here, we used an untargeted omics approach to determine the soil microbial community's metaphenomic response to soil moisture and to define specific metabolic signatures of the response. Specifically, we aimed to develop the technical approaches and metabolic mapping framework necessary for future systematic ecological studies. We collected soil from three locations at the Konza Long-Term Ecological Research (LTER) field station in Kansas, and the soils were incubated for 15 days under dry or wet conditions and compared to field-moist controls. The microbiome response to wetting or drying was determined by 16S rRNA amplicon sequencing, metatranscriptomics, and metabolomics, and the resulting shifts in taxa, gene expression, and metabolites were assessed. Soil drying resulted in significant shifts in both the composition and function of the soil microbiome. In contrast, there were few changes following wetting. The combined metabolic and metatranscriptomic data were used to generate reaction networks to determine the metaphenomic response to soil moisture transitions. Site location was a strong determinant of the response of the soil microbiome to moisture perturbations. However, some specific metabolic pathways changed consistently across sites, including an increase in pathways and metabolites for production of sugars and other osmolytes as a response to drying. Using this approach, we demonstrate that despite the high complexity of the soil habitat, it is possible to generate insight into the effect of environmental change on the soil microbiome and its physiology and functions, thus laying the groundwork for future, targeted studies.IMPORTANCE Climate change is predicted to result in increased drought extent and intensity in the highly productive, former tallgrass prairie region of the continental United States. These soils store large reserves of carbon. The decrease in soil moisture due to drought has largely unknown consequences on soil carbon cycling and other key biogeochemical cycles carried out by soil microbiomes. In this study, we found that soil drying had a significant impact on the structure and function of soil microbial communities, including shifts in expression of specific metabolic pathways, such as those leading toward production of osmoprotectant compounds. This study demonstrates the application of an untargeted multi-omics approach to decipher details of the soil microbial community's metaphenotypic response to environmental perturbations and should be applicable to studies of other complex microbial systems as well.

11.
Sci Total Environ ; 622-623: 735-742, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29223900

RESUMEN

In a climate change scenario, it is important to understand the factors that lead to changes in a soil carbon (C) sink. It is recognized that such process is highly dependent on climate, soil properties, topography, and vegetation. However, few studies demonstrate how these mechanisms operate in highly weathered Oxisols. Therefore, this study evaluated the driving factors for C recovery and accumulation and its relations with fertility attributes in the soil profile (0 to 1m depth) in no-till (NT) croplands of south Brazil. The adoption of NT in the studied fields started between 1978 (pioneer areas) and 1990 and represent a range of textural and mineralogical characteristics South Brazil main croplands. Soil samples were collected in paired fields of native vegetation and NT (NV vs. long-term NT) to a depth of 1m. The studied NT areas of Rio Grande do Sul State were managed according to the principles of conservation agriculture (minimum soil disturbance, permanent soil cover and diverse crop rotation). The processes that drove SOC recovery in the studied sites were soil fertility management allied with high C input through intense crop rotation. The C recovery was were for areas with the predominance of soybean in the cropping system, higher levels of Al3+ and lower levels of Mg2+ and P. Sites with medium/high cropping intensity, lower levels of Al3+ and higher levels of P, Ca2+, Mg2+, and K+ resulted in higher C recovery.

12.
Sci Rep ; 8(1): 16810, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429492

RESUMEN

Direct evidence-based approaches are vital to evaluating newly proposed theories on the persistence of soil organic carbon and establishing the contributions of abiotic and biotic controls. Our primary goal was to directly identify the mechanisms of organic carbon stabilization in native-state, free soil microaggregates without disrupting the aggregate microstructure using scanning transmission x-ray microscopy coupled with near edge x-ray absorption fine structure spectroscopy (STXM-NEXAFS). The influence of soil management practices on microaggregate associated-carbon was also assessed. Free, stable soil microaggregates were collected from a tropical agro-ecosystem in Cruz Alta, Brazil. The long-term experimental plots (>25 years) comparing two tillage systems: no-till and till with a complex crop rotation. Based on simultaneously collected multi-elemental associations and speciation, STXM-NEXAFS successfully provided submicron level information on organo-mineral associations. Simple organic carbon sources were found preserved within microaggregates; some still possessing original morphology, suggesting that their stabilization was not entirely governed by the substrate chemistry. Bulk analysis showed higher and younger organic carbon in microaggregates from no-till systems than tilled systems. These results provide direct submicron level evidence that the surrounding environment is involved in stabilizing organic carbon, thus favoring newly proposed concepts on the persistence of soil organic carbon.

13.
Front Microbiol ; 9: 1775, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30158906

RESUMEN

The North American prairie covered about 3.6 million-km2 of the continent prior to European contact. Only 1-2% of the original prairie remains, but the soils that developed under these prairies are some of the most productive and fertile in the world, containing over 35% of the soil carbon in the continental United States. Cultivation may alter microbial diversity and composition, influencing the metabolism of carbon, nitrogen, and other elements. Here, we explored the structure and functional potential of the soil microbiome in paired cultivated-corn (at the time of sampling) and never-cultivated native prairie soils across a three-states transect (Wisconsin, Iowa, and Kansas) using metagenomic and 16S rRNA gene sequencing and lipid analysis. At the Wisconsin site, we also sampled adjacent restored prairie and switchgrass plots. We found that agricultural practices drove differences in community composition and diversity across the transect. Microbial biomass in prairie samples was twice that of cultivated soils, but alpha diversity was higher with cultivation. Metagenome analyses revealed denitrification and starch degradation genes were abundant across all soils, as were core genes involved in response to osmotic stress, resource transport, and environmental sensing. Together, these data indicate that cultivation shifted the microbiome in consistent ways across different regions of the prairie, but also suggest that many functions are resilient to changes caused by land management practices - perhaps reflecting adaptations to conditions common to tallgrass prairie soils in the region (e.g., soil type, parent material, development under grasses, temperature and rainfall patterns, and annual freeze-thaw cycles). These findings are important for understanding the long-term consequences of land management practices to prairie soil microbial communities and their genetic potential to carry out key functions.

14.
J Environ Qual ; 35(4): 1364-73, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16825456

RESUMEN

This study examined the economic potential of no-tillage versus conventional tillage to sequester soil carbon by using two rates of commercial N fertilizer or beef cattle manure for continuous corn (Zea mays L.) production. Yields, input rates, field operations, and prices from an experiment were used to simulate a distribution of net returns for eight production systems. Carbon release values from direct, embodied, and feedstock energies were estimated for each system, and were used with soil carbon sequestration rates from soil tests to determine the amount of net carbon sequestered by each system. The values of carbon credits that provide an incentive for managers to adopt production systems that sequester carbon at greater rates were derived. No-till systems had greater annual soil carbon gains, net carbon gains, and net returns than conventional tillage systems. Systems that used beef cattle manure had greater soil carbon gains and net carbon gains, but lower net returns, than systems that used commercial N fertilizer. Carbon credits would be needed to encourage the use of manure-fertilized cropping systems.


Asunto(s)
Carbono/metabolismo , Conservación de los Recursos Naturales , Productos Agrícolas , Estiércol , Zea mays/crecimiento & desarrollo , Animales , Bovinos , Kansas , Suelo/análisis
15.
Glob Chang Biol ; 11(12): 2057-2064, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34991286

RESUMEN

The general lack of significant changes in mineral soil C stocks during CO2 -enrichment experiments has cast doubt on predictions that increased soil C can partially offset rising atmospheric CO2 concentrations. Here, we show, through meta-analysis techniques, that these experiments collectively exhibited a 5.6% increase in soil C over 2-9 years, at a median rate of 19 g C m-2 yr-1 . We also measured C accrual in deciduous forest and grassland soils, at rates exceeding 40 g C m-2 yr-1 for 5-8 years, because both systems responded to CO2 enrichment with large increases in root production. Even though native C stocks were relatively large, over half of the accrued C at both sites was incorporated into microaggregates, which protect C and increase its longevity. Our data, in combination with the meta-analysis, demonstrate the potential for mineral soils in diverse temperate ecosystems to store additional C in response to CO2 enrichment.

17.
Ann N Y Acad Sci ; 1328: 10-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25376887

RESUMEN

Ruminant livestock provides meat and dairy products that sustain health and livelihood for much of the world's population. Grazing lands that support ruminant livestock provide numerous ecosystem services, including provision of food, water, and genetic resources; climate and water regulation; support of soil formation; nutrient cycling; and cultural services. In the U.S. southern Great Plains, beef production on pastures, rangelands, and hay is a major economic activity. The region's climate is characterized by extremes of heat and cold and extremes of drought and flooding. Grazing lands occupy a large portion of the region's land, significantly affecting carbon, nitrogen, and water budgets. To understand vulnerabilities and enhance resilience of beef production, a multi-institutional Coordinated Agricultural Project (CAP), the "grazing CAP," was established. Integrative research and extension spanning biophysical, socioeconomic, and agricultural disciplines address management effects on productivity and environmental footprints of production systems. Knowledge and tools being developed will allow farmers and ranchers to evaluate risks and increase resilience to dynamic conditions. The knowledge and tools developed will also have relevance to grazing lands in semiarid and subhumid regions of the world.


Asunto(s)
Conservación de los Recursos Naturales , Carne/provisión & distribución , Agricultura , Crianza de Animales Domésticos , Animales , Bovinos , Proteínas en la Dieta/provisión & distribución , Abastecimiento de Alimentos , Humanos , Lluvia , Estados Unidos
18.
PLoS One ; 8(1): e55560, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383225

RESUMEN

Three advanced technologies to measure soil carbon (C) density (g C m(-2)) are deployed in the field and the results compared against those obtained by the dry combustion (DC) method. The advanced methods are: a) Laser Induced Breakdown Spectroscopy (LIBS), b) Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS), and c) Inelastic Neutron Scattering (INS). The measurements and soil samples were acquired at Beltsville, MD, USA and at Centro International para el Mejoramiento del Maíz y el Trigo (CIMMYT) at El Batán, Mexico. At Beltsville, soil samples were extracted at three depth intervals (0-5, 5-15, and 15-30 cm) and processed for analysis in the field with the LIBS and DRIFTS instruments. The INS instrument determined soil C density to a depth of 30 cm via scanning and stationary measurements. Subsequently, soil core samples were analyzed in the laboratory for soil bulk density (kg m(-3)), C concentration (g kg(-1)) by DC, and results reported as soil C density (kg m(-2)). Results from each technique were derived independently and contributed to a blind test against results from the reference (DC) method. A similar procedure was employed at CIMMYT in Mexico employing but only with the LIBS and DRIFTS instruments. Following conversion to common units, we found that the LIBS, DRIFTS, and INS results can be compared directly with those obtained by the DC method. The first two methods and the standard DC require soil sampling and need soil bulk density information to convert soil C concentrations to soil C densities while the INS method does not require soil sampling. We conclude that, in comparison with the DC method, the three instruments (a) showed acceptable performances although further work is needed to improve calibration techniques and (b) demonstrated their portability and their capacity to perform under field conditions.


Asunto(s)
Carbono/análisis , Suelo/análisis , Análisis Espectral/métodos , Monitoreo del Ambiente/métodos , Maryland , Difracción de Neutrones/instrumentación , Difracción de Neutrones/métodos , Dispersión del Ángulo Pequeño , Suelo/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis Espectral/instrumentación
19.
Glob Chang Biol ; 19(8): 2285-302, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23505220

RESUMEN

Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6 Gt CO2 -eq. yr(-1) ) in meeting both challenges than do supply-side measures (1.5-4.3 Gt CO2 -eq. yr(-1) at carbon prices between 20 and 100 US$ tCO2 -eq. yr(-1) ), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.


Asunto(s)
Agricultura , Cambio Climático , Abastecimiento de Alimentos , Agricultura Forestal , Gases , Efecto Invernadero/prevención & control , Conservación de los Recursos Naturales , Ecosistema , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA