Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Am J Bot ; 108(8): 1405-1416, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460105

RESUMEN

PREMISE: Adaptive traits can be dramatically altered by genome duplication. The study of interactions among traits, ploidy, and the environment are necessary to develop an understanding of how polyploidy affects niche differentiation and to develop restoration strategies for resilient native ecosystems. METHODS: Growth and fecundity were measured in common gardens for 39 populations of big sagebrush (Artemisia tridentata) containing two subspecies and two ploidy levels. General linear mixed-effect models assessed how much of the trait variation could be attributed to genetics (i.e., ploidy and climatic adaptation), environment, and gene-environment interactions. RESULTS: Growth and fecundity variation were explained well by the mixed models (80% and 91%, respectively). Much of the trait variation was attributed to environment, and 15% of variation in growth and 34% of variation in seed yield were attributed to genetics. Genetic trait variation was mostly attributable to ploidy, with much higher growth and seed production in diploids, even in a warm-dry environment typically dominated by tetraploids. Population-level genetic variation was also evident and was related to the climate of each population's origin. CONCLUSIONS: Ploidy is a strong predictor growth and seed yield, regardless of common-garden environment. The superior growth and fecundity of diploids across environments raises the question as to how tetraploids can be more prevalent than diploids, especially in warm-dry environments. Two hypotheses that may explain the abundance of tetraploids on the landscape include selection for drought resistance at the seedling stage, and greater competitive ability in water uptake in the upper soil horizon.


Asunto(s)
Artemisia , Ecosistema , Clima , Fertilidad/genética , Duplicación de Gen , Poliploidía
2.
Am J Bot ; 106(7): 922-934, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31294835

RESUMEN

PREMISE: Physiological responses to temperature extremes are considered strong drivers of species' demographic responses to climate variability. Plants are typically classified as either avoiders or tolerators in their freezing-resistance mechanism, but a gradient of physiological-threshold freezing responses may exist among individuals of a species. Moreover, adaptive significance of physiological freezing responses is poorly characterized, particularly under warming conditions that relax selection on cold hardiness. METHODS: Freezing responses were measured in winter and again for new foliage in spring for 14 populations of Artemisia tridentata collected throughout its range and planted in a warm common garden. The relationships of the freezing responses to survival were evaluated in the warm garden and in two colder gardens. RESULTS: Winter and spring freezing resistance were not correlated and appeared to be under differing selection regimes, as evident in correlations with different population climate of origin variables. All populations resisted considerably lower temperatures in winter than in spring, with populations from more continental climates showing narrower freezing safety margins (difference in temperatures at which ice-nucleation occurs and 50% reduction in chlorophyll fluorescence occurs) in spring. Populations with greater winter freezing resistance had lower survivorship in the warmest garden, while populations with greater spring freezing resistance had lower survivorship in a colder garden. CONCLUSIONS: These survivorship patterns relative to physiological thresholds suggest excess freezing resistance may incur a survival cost that likely relates to a trade-off between carbon gain and freezing resistance during critical periods of moisture availability. This cost has implications for seed moved from cooler to warmer environments and for plants growing in warming environments.


Asunto(s)
Artemisia/fisiología , Clima Frío , Congelación , Noroeste de Estados Unidos , Estaciones del Año , Sudoeste de Estados Unidos , Agua/fisiología
3.
Ecol Appl ; 28(8): 2165-2174, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30198207

RESUMEN

Genetic resources have to be managed appropriately to mitigate the impact of climate change. For many wildland plants, conservation will require knowledge of the climatic factors affecting intraspecific genetic variation to minimize maladaptation. Knowledge of the interaction between traits and climate can focus management resources on vulnerable populations, provide guidance for seed transfer, and enhance fitness and resilience under changing climates. In this study, traits of big sagebrush (Artemisia tridentata) were examined among common gardens located in different climates. We focus on two subspecies, wyomingensis and tridentata, that occupy the most imperiled warm-dry spectrum of the sagebrush biome. Populations collected across the sagebrush biome were recorded for flower phenology and survival. Mixed-effects models examined each trait to evaluate genetic variation, environmental effects, and adaptive breadth of populations. Climate variables derived from population-source locations were significantly associated with these traits (P < 0.0001), explaining 31% and 11% of the flower phenology and survival variation, respectively. To illustrate our model and assess variability in prediction, we examine fixed and focal point seed transfer approaches to map contemporary and climate model ensemble projections in two different regions of the sagebrush biome. A comparison of seed transfer areas predicts that populations from warmer climates become more prevalent, replacing colder-adapted populations by mid-century. However, these warm-adapted populations are often located along the trailing edge, margins of the species range predicted to be lost due to a contraction of the climatic niche. Management efforts should focus on the collection and conservation of vulnerable populations and prudent seed transfer to colder regions where these populations are projected to occur by mid-century. Our models provide the foundation to develop an empirical, climate-based seed transfer system for current and future restoration of big sagebrush.


Asunto(s)
Artemisia/fisiología , Cambio Climático , Conservación de los Recursos Naturales/métodos , Dispersión de las Plantas , Semillas/crecimiento & desarrollo , Artemisia/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Longevidad , Modelos Biológicos , Noroeste de Estados Unidos , Sudoeste de Estados Unidos
4.
Glob Chang Biol ; 23(6): 2499-2508, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27739159

RESUMEN

Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R2  = 0.79, marginal R2  = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change.


Asunto(s)
Artemisia , Cambio Climático , Flores , Estaciones del Año , Artemisia/crecimiento & desarrollo , Artemisia/fisiología , Clima , Fenotipo , Reproducción , Temperatura
5.
Mycologia ; 109(1): 75-91, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28402796

RESUMEN

Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis (Eurasia) clade 2. Of note is that A. borealis (Eurasia) clade 1 appears basal to the Solidipes/Ostoyae and Gallica superclades. The Neighbor-net analysis showed similar phylogenetic relationships. This study further demonstrates the utility of tef1 for global phylogenetic studies of Armillaria species and provides critical insights into multiple taxonomic issues that warrant further study.


Asunto(s)
Armillaria/clasificación , Armillaria/genética , Factor 1 de Elongación Peptídica/genética , Filogenia , Asia , Europa (Continente) , América del Norte , Análisis de Secuencia de ADN
6.
New Phytol ; 211(4): 1393-401, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27112551

RESUMEN

Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance. Headspace VOCs from five taxa of sagebrush (Artemisia, subgenus Tridentatae) growing in two common gardens were collected and analyzed using GC-MS. Of the 74 total VOCs emitted, only 15 were needed to segregate sagebrush taxa using Random Forest analysis with a low error of 4%. All but one of these 15 VOCs showed qualitative differences among taxa. Ordination of results showed strong clustering that reflects taxonomic classification. Random Forest identified five VOCs that classify based on environment (2% error), which do not overlap with the 15 VOCs that segregated taxa. We show that VOCs can discriminate closely related species and subspecies of Artemisia, which are difficult to define using molecular markers or morphology. Thus, it appears that changes in VOCs either lead the way or follow closely behind speciation in this group. Future research should explore the functions of VOCs, which could provide further insights into the evolution of sagebrushes.


Asunto(s)
Artemisia/metabolismo , Evolución Biológica , Especiación Genética , Compuestos Orgánicos Volátiles/análisis , Ambiente , Geografía
7.
Ecol Appl ; 24(2): 413-27, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24689151

RESUMEN

Interacting threats to ecosystem function, including climate change, wildfire, and invasive species necessitate native plant restoration in desert ecosystems. However, native plant restoration efforts often remain unguided by ecological genetic information. Given that many ecosystems are in flux from climate change, restoration plans need to account for both contemporary and future climates when choosing seed sources. In this study we analyze vegetative responses, including mortality, growth, and carbon isotope ratios in two blackbrush (Coleogyne ramosissima) common gardens that included 26 populations from a range-wide collection. This shrub occupies ecotones between the warm and cold deserts of Mojave and Colorado Plateau ecoregions in western North America. The variation observed in the vegetative responses of blackbrush populations was principally explained by grouping populations by ecoregions and by regression with site-specific climate variables. Aridity weighted by winter minimum temperatures best explained vegetative responses; Colorado Plateau sites were usually colder and drier than Mojave sites. The relationship between climate and vegetative response was mapped within the boundaries of the species-climate space projected for the contemporary climate and for the decade surrounding 2060. The mapped ecological genetic pattern showed that genetic variation could be classified into cool-adapted and warm-adapted ecotypes, with populations often separated by steep dines. These transitions are predicted to occur in both the Mojave Desert and Colorado Plateau ecoregions. While under contemporary conditions the warm-adapted ecotype occupies the majority of climate space, climate projections predict that the cool-adapted ecotype could prevail as the dominant ecotype as the climate space of blackbrush expands into higher elevations and latitudes. This study provides the framework for delineating climate change-responsive seed transfer guidelines, which are needed to inform restoration and management planning. We propose four transfer zones in blackbrush that correspond to areas currently dominated by cool-adapted and warm-adapted ecotypes in each of the two ecoregions.


Asunto(s)
Adaptación Fisiológica , Rosaceae/clasificación , Rosaceae/fisiología , Clima , Ecosistema , Temperatura , Agua
8.
Evolution ; 78(2): 300-314, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962379

RESUMEN

Widely distributed plants of western North America experience divergent selection across environmental gradients, have complex histories shaped by biogeographic barriers and distributional shifts and often illustrate continuums of reproductive isolation. Rubber rabbitbrush (Ericameria nauseosa) is a foundational shrub species that occurs across diverse environments of western North America. Its remarkable phenotypic diversity is currently ascribed to two subspecies-Ericameria nauseosa nauseosa and Ericameria nauseosa consimilis-and 22 named varieties. To understand how genetic variation is partitioned across subspecies, varieties, and environments, we used high throughput sequencing of reduced representation libraries. We found clear evidence for divergence between the two subspecies, despite largely sympatric distributions. Numerous locations exhibiting admixed ancestry were not geographically localized but were widely distributed across a mosaic hybrid zone. The occurrence of hybrid and subspecific ancestries was strongly predicted by environmental variables as well as the proximity to major ecotones between ecoregions. Although this repeatability illustrates the importance of environmental factors in shaping reproductive isolation, variability in the prevalence of hybridization also indicates these factors likely differ across ecological contexts. There was mixed evidence for the evolutionary cohesiveness of varieties, but several genetically distinct and narrow endemic varieties exhibited admixed subspecific ancestries, hinting at the possibility for transgressive hybridization to contribute to phenotypic novelty and the colonization of new environments in E. nauseosa.


Asunto(s)
Aislamiento Reproductivo , Goma , Evolución Biológica , América del Norte , Hibridación Genética
9.
Front Plant Sci ; 14: 1155868, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284723

RESUMEN

Current and past climatic changes can shift plant climatic niches, which may cause spatial overlap or separation between related taxa. The former often leads to hybridization and introgression, which may generate novel variation and influence the adaptive capacity of plants. An additional mechanism facilitating adaptations to novel environments and an important evolutionary driver in plants is polyploidy as the result of whole genome duplication. Artemisia tridentata (big sagebrush) is a landscape-dominating foundational shrub in the western United States which occupies distinct ecological niches, exhibiting diploid and tetraploid cytotypes. Tetraploids have a large impact on the species' landscape dominance as they occupy a preponderance of the arid spectrum of A. tridentata range. Three distinct subspecies are recognized, which co-occur in ecotones - the transition zone between two or more distinct ecological niches - allowing for hybridization and introgression. Here we assess the genomic distinctiveness and extent of hybridization among subspecies at different ploidies under both contemporary and predicted future climates. We sampled five transects throughout the western United States where a subspecies overlap was predicted using subspecies-specific climate niche models. Along each transect, we sampled multiple plots representing the parental and the potential hybrid habitats. We performed reduced representation sequencing and processed the data using a ploidy-informed genotyping approach. Population genomic analyses revealed distinct diploid subspecies and at least two distinct tetraploid gene pools, indicating independent origins of the tetraploid populations. We detected low levels of hybridization (2.5%) between the diploid subspecies, while we found evidence for increased admixture between ploidy levels (18%), indicating hybridization has an important role in the formation of tetraploids. Our analyses highlight the importance of subspecies co-occurrence within these ecotones to maintain gene exchange and potential formation of tetraploid populations. Genomic confirmations of subspecies in the ecotones support the subspecies overlap predicted by the contemporary climate niche models. However, future mid-century projections of subspecies niches predict a substantial loss in range and subspecies overlap. Thus, reductions in hybridization potential could affect new recruitment of genetically variable tetraploids that are vital to this species' ecological role. Our results underscore the importance of ecotone conservation and restoration.

10.
Plant Environ Interact ; 4(4): 201-214, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37583876

RESUMEN

Western North America has been experiencing persistent drought exacerbated by climate change for over two decades. This extreme climate event is a clear threat to native plant communities. Artemisia tridentata is a keystone shrub species in western North America and is threatened by climate change, urbanization, and wildfire. A drought Genotype × Environment (G × E) experiment was conducted to assess phenotypic plasticity and differential gene expression in A. tridentata. The G × E experiment was performed on diploid A. tridentata seedlings from two populations (one from Idaho, USA and one from Utah, USA), which experience differing levels of drought stress during the summer months. Photosynthetic data, leaf temperature, and gene expression levels were compared between treatments and populations. The Utah population maintained higher photosynthetic rates and photosynthetic efficiency than the Idaho population under drought stress. The Utah population also exhibited far greater transcriptional plasticity than the Idaho population and expressed genes of response pathways distinct from those of the Idaho population. Populations of A. tridentata differ greatly in their drought response pathways, likely due to differences in response pathways that have evolved under distinct climatic regimes. Epigenetic processes likely contribute to the observed differences between the populations.

11.
Am J Bot ; 99(12): 1962-75, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23204489

RESUMEN

PREMISE OF THE STUDY: Hybridization has played an important role in the evolution and ecological adaptation of diploid and polyploid plants. Artemisia tridentata (Asteraceae) tetraploids are extremely widespread and of great ecological importance. These tetraploids are often taxonomically identified as A. tridentata subsp. wyomingensis or as autotetraploids of diploid subspecies tridentata and vaseyana. Few details are available as to how these tetraploids are formed or how they are related to diploid subspecies. • METHODS: We used amplicon sequencing to assess phylogenetic relationships among three recognized subspecies: tridentata, vaseyana, and wyomingensis. DNA sequence data from putative genes were pyrosequenced and assembled from 329 samples. Nucleotide diversity and putative haplotypes were estimated from the high-read coverage. Phylogenies were constructed from Bayesian coalescence and neighbor-net network analyses. • KEY RESULTS: Analyses support distinct diploid subspecies of tridentata and vaseyana in spite of known hybridization in ecotones. Nucleotide diversity estimates of populations compared to the total diversity indicate the relationships are predominately driven by a small proportion of the amplicons. Tetraploids, including subspecies wyomingensis, are polyphyletic occurring within and between diploid subspecies groups. • CONCLUSIONS: Artemisia tridentata is a species comprising phylogenetically distinct diploid progenitors and a tetraploid complex with varying degrees of phylogenetic and morphological affinities to the diploid subspecies. These analyses suggest tetraploids are formed locally or regionally from diploid tridentata and vaseyana populations via autotetraploidy, followed by introgression between tetraploid groups. Understanding the phylogenetic vs. ecological relationships of A. tridentata subspecies will have bearing on how to restore these desert ecosystems.


Asunto(s)
Artemisia/anatomía & histología , Artemisia/fisiología , ADN de Plantas/genética , Artemisia/clasificación , Artemisia/genética , Mapeo Contig , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Noroeste de Estados Unidos , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Poliploidía , Análisis de Secuencia de ADN , Homología de Secuencia , Sudoeste de Estados Unidos
12.
Evol Appl ; 15(1): 3-21, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35126645

RESUMEN

The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.

13.
Ecol Evol ; 12(12): e9630, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36532138

RESUMEN

Field-based transplant gardens, including common and reciprocal garden experiments, are a powerful tool for studying genetic variation and gene-by-environment interactions. These experiments assume that individuals within the garden represent independent replicates growing in a homogenous environment. Plant neighborhood interactions are pervasive across plant populations and could violate assumptions of transplant garden experiments. We demonstrate how spatially explicit models for plant-plant interactions can provide novel insights on genotypes' performance in field-transplant garden designs. We used individual-based models, based on data from a sagebrush (Artemisia spp.) common garden, to simulate the impact of spatial plant-plant interactions on between-group differences in plant growth. We found that planting densities within the range of those used in many common gardens can bias experimental outcomes. Our results demonstrate that higher planting densities can lead to inflated group differences and may confound genotypes' competitive ability and genetically underpinned variation. Synthesis. We propose that spatially explicit models can help avoid biased results by informing the design and analysis of field-based transplant garden experiments. Alternately, including neighborhood effects in post hoc analyses of transplant garden experiments is likely to provide novel insights into the roles of biotic factors and density dependence in genetic differentiation.


Los experimentos de trasplante de especies en parcelas de campo experimentales, tanto bajo condiciones ambientales comunes ("common gardens") como diferentes ("reciprocal gardens"), son una poderosa herramienta que permite estudiar la variación genética y la interacción entre el genoma y el medio ambiente. Dichos experimentos asumen que los individuos dentro de una misma parcela representan réplicas independientes creciendo bajo condiciones ambientales homogéneas. Las interacciones entre plantas vecinas están omnipresentes en las dinámicas poblaciones y pueden suponer una violación de dichas asunciones. Sin embargo, enfoques cuantitativos que permitan evaluar la adecuación del diseño experimental son escasos. Nosotros demostramos cómo los modelos espacialmente explícitos para las interacciones planta­planta pueden proporcionar nuevos hallazgos sobre el rendimiento genotípico en el diseño de experimentos de trasplante. Utilizamos modelos basados en individuos, junto con datos de "artemisa" (Artemisia spp.) procedentes de un "common garden," para simular el impacto de las interacciones planta­planta sobre las diferencias de crecimiento entre grupos. Encontramos que la densidad de siembra utilizada con frecuencia en muchos "common gardens" puede sesgar la estimación de la variación entre grupos. Nuestros resultados demuestran que una mayor densidad de siembra puede inflar las diferencias entre grupos, confundir la habilidad competitiva de los genomas y la variabilidad sustentada genéticamente, introduciendo así un sesgo en el experimento. Proponemos que los modelos espacialmente explícitos pueden ayudar a evitar el sesgo en los resultados mediante el apoyo en el diseño y análisis de experimentos de trasplante. Incluir efectos de vecindad en el análisis a posteriori de experimentos puede proporcionar nuevos hallazgos sobre el papel de los factores bióticos y densidad­dependientes en la diferenciación genética.

14.
G3 (Bethesda) ; 12(7)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35567476

RESUMEN

Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.


Asunto(s)
Artemisia , Artemisia/genética , Cromosomas , Cambio Climático , Haploidia , América del Norte
15.
BMC Genomics ; 12: 370, 2011 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-21767398

RESUMEN

BACKGROUND: Big sagebrush (Artemisia tridentata) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs) and detection of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in subspecies of big sagebrush. RESULTS: cDNA of A. tridentata sspp. tridentata and vaseyana were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. tridentata and 20,250 contigs in ssp. vaseyana. A BLASTx search against the non-redundant (NR) protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e⁻¹5). A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. wyomingensis) obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. tridentata and vaseyana identified in the combined assembly were also polymorphic within the two geographically distant ssp. wyomingensis samples. CONCLUSION: We have produced a large EST dataset for Artemisia tridentata, which contains a large sample of the big sagebrush leaf transcriptome. SNP mapping among the three subspecies suggest the origin of ssp. wyomingensis via mixed ancestry. A large number of SNP and SSR markers provide the foundation for future research to address questions in big sagebrush evolution, ecological genetics, and conservation using genomic approaches.


Asunto(s)
Artemisia/genética , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple , Alelos , Mapeo Contig , Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie , Secuencias Repetidas en Tándem
16.
Ecology ; 102(11): e03502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314039

RESUMEN

Interactions between neighboring plants are critical for biodiversity maintenance in plant populations and communities. Intraspecific trait variation and genome duplication are common in plant species and can drive eco-evolutionary dynamics through genotype-mediated plant-plant interactions. However, few studies have examined how species-wide intraspecific variation may alter interactions between neighboring plants. We investigate how subspecies and ploidy variation in a genetically diverse species, big sagebrush (Artemisia tridentata), can alter the demographic outcomes of plant interactions. Using a replicated, long-term common garden experiment that represents range-wide diversity of A. tridentata, we ask how intraspecific variation, environment, and stand age mediate neighbor effects on plant growth and survival. Spatially explicit models revealed that ploidy variation and subspecies identity can mediate plant-plant interactions but that the effect size varied in time and across experimental sites. We found that demographic impacts of neighbor effects were strongest during early stages of stand development and in sites with greater growth rates. Within subspecies, tetraploid populations showed greater tolerance to neighbor crowding compared to their diploid variants. Our findings provide evidence that intraspecific variation related to genome size and subspecies identity impacts spatial demography in a genetically diverse plant species. Accounting for intraspecific variation in studies of conspecific density dependence will improve our understanding of how local populations will respond to novel genotypes and biotic interaction regimes. As introduction of novel genotypes into local populations becomes more common, quantifying demographic processes in genetically diverse populations will help predict long-term consequences of plant-plant interactions.


Asunto(s)
Artemisia , Biodiversidad , Genotipo , Fenotipo
17.
Ecol Evol ; 11(21): 15417-15429, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765187

RESUMEN

Climate change presents distinct ecological and physiological challenges to plants as extreme climate events become more common. Understanding how species have adapted to drought, especially ecologically important nonmodel organisms, will be crucial to elucidate potential biological pathways for drought adaptation and inform conservation strategies. To aid in genome-to-phenome research, a draft genome was assembled for a diploid individual of Artemisia tridentata subsp. tridentata, a threatened keystone shrub in western North America. While this taxon has few genetic resources available and genetic/genomics work has proven difficult due to genetic heterozygosity in the past, a draft genome was successfully assembled. Aquaporin (AQP) genes and their promoter sequences were mined from the draft genome to predict mechanisms regulating gene expression and generate hypotheses on key genes underpinning drought response. Fifty-one AQP genes were fully assembled within the draft genome. Promoter and phylogenetic analyses revealed putative duplicates of A. tridentata subsp. tridentata AQPs which have experienced differentiation in promoter elements, potentially supporting novel biological pathways. Comparison with nondrought-tolerant congener supports enrichments of AQP genes in this taxon during adaptation to drought stress. Differentiation of promoter elements revealed that paralogues of some genes have evolved to function in different pathways, highlighting these genes as potential candidates for future research and providing critical hypotheses for future genome-to-phenome work.

18.
Evol Appl ; 11(10): 2025-2039, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30459846

RESUMEN

A species' population structure and history are critical pieces of information that can help guide the use of available native plant materials in restoration treatments and decide what new native plant materials should be developed to meet future restoration needs. In the western United States, Pseudoroegneria spicata (bluebunch wheatgrass; Poaceae) is an important component of grassland and shrubland plant communities and commonly used for restoration due to its drought resistance and competitiveness with exotic weeds. We used next-generation sequencing data to investigate the processes that shaped P. spicata's geographic pattern of genetic variation across the Intermountain West. Pseudoroegneria spicata's genetic diversity is partitioned into populations that likely differentiated since the Last Glacial Maximum. Adjacent populations display varying magnitudes of historical gene flow, with migration rates ranging from multiple migrants per generation to multiple generations per migrant. When considering the commercial germplasm sources available for restoration, genetic identities remain representative of the wildland localities from which germplasm sources were originally developed, and they maintain high levels of heterozygosity and nucleotide diversity. However, the commercial germplasm sources represent a small fraction of the overall genetic diversity of P. spicata in the Intermountain West. Given the low migration rates and long divergence times between some pairs of P. spicata populations, using commercial germplasm sources could facilitate undesirable restoration outcomes when used in certain geographic areas, even if the environment in which the commercial materials thrive is similar to that of the restoration site. As such, population structure and history can be used to provide guidance on what geographic areas may need additional native plant materials so that restoration efforts support species and community resilience and improve outcomes.

19.
Evol Appl ; 10(4): 313-322, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28352292

RESUMEN

A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-garden experiments were established at three sites with seedlings from 55 source-populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess differences in survival between gardens and populations. We found evidence of adaptive genetic variation for survival. Survival within gardens differed by source-population and a substantial proportion of this variation was explained by seed climate of origin. Plants from areas with the coldest winters had the highest levels of survival, while populations from warmer and drier sites had the lowest levels of survival. Survival was lowest, 36%, in the garden that was prone to the lowest minimum temperatures. These results suggest the importance of climatic driven genetic differences and their effect on survival. Understanding how genetic variation is arrayed across the landscape, and its association with climate can greatly enhance the success of restoration and conservation.

20.
AoB Plants ; 9(3): plx016, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28533899

RESUMEN

Population genetic information can provide valuable insight for the conservation and management of threatened and endangered plant species. Tamarix taklamakanensis is an endangered shrub endemic to arid basins of northwestern China. This species serves to stabilize soils in this region, but has seen substantial loss in its abundance due to depletion of ground water. The populations of this species have become small and fragmented, warranting conservation. Seven microsatellite loci were used to assess the genetic diversity and structure of 15 populations in the Tarim Basin, China. Among populations, the expected heterozygosity and total gene diversity were both moderate (HE = 0.392, hT = 0.432), however the allelic diversity was low (A = 2.4). Eleven populations were detected to have experienced recent bottlenecks using Wilcoxon's test and a model-shift test. Most populations of T. taklamakanensis in the centre of Tarim Basin showed low levels of genetic differentiation, but higher levels in geographically outlying populations. Genetic structure based on Bayesian assignment, the neighbour-joining network and principal coordinates analyses produced similar results, supporting five groups in the Tarim Basin. Gene flow was high among Bayesian groups based on historical gene flow estimated by private alleles. The genetic structure of T. taklamakanensis supports a pattern where gene flow principally occurs along river corridors through hydrochory of seeds and insect-mediated pollination. Populations upstream have contributed to a more diverse mixture of populations near the confluence of several rivers near the centre of Tarim Basin. This pattern of genetic structure could be influenced by the flow of water from different river systems. Conservation efforts should focus on fostering the regeneration of this species, maintaining genetic diversity and preserving the extant genetic structure. Conservation efforts are contingent upon maintaining ground water and streamflows in this arid basin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA