Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 594(10): 2661-79, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26959279

RESUMEN

KEY POINTS: The dorsal motor nucleus of the vagus (DMV) in the brainstem consists primarily of vagal preganglionic neurons that innervate postganglionic neurons of the upper gastrointestinal tract. The activity of the vagal preganglionic neurons is predominantly regulated by GABAergic transmission in the DMV. The present findings indicate that the overwhelming GABAergic drive present at the DMV is primarily from somatostatin positive GABA (Sst-GABA) DMV neurons. Activation of both melanocortin and µ-opioid receptors at the DMV inhibits Sst-GABA DMV neurons. Sst-GABA DMV neurons may serve as integrative targets for modulating vagal output activity to the stomach. ABSTRACT: We have previously shown that local GABA signalling in the brainstem is an important determinant of vagally-mediated gastric activity. However, the neural identity of this GABA source is currently unknown. To determine this, we focused on the somatostatin positive GABA (Sst-GABA) interneuron in the dorsal motor nucleus of the vagus (DMV), a nucleus that is intimately involved in regulating gastric activity. Also of particular interest was the effect of melanocortin and µ-opioid agonists on neural activity of Sst-GABA DMV neurons because their in vivo administration in the DMV mimics GABA blockade in the nucleus. Experiments were conducted in brain slice preparation of transgenic adult Sst-IRES-Cre mice expressing tdTomato fluorescence, channelrhodopsin-2, archaerhodopsin or GCaMP3. Electrophysiological recordings were obtained from Sst-GABA DMV neurons or DiI labelled gastric-antrum projecting DMV neurons. Our results show that optogenetic stimulation of Sst-GABA neurons results in a robust inhibition of action potentials of labelled premotor DMV neurons to the gastric-antrum through an increase in inhibitory post-synaptic currents. The activity of the Sst-GABA neurons in the DMV is inhibited by both melanocortin and µ-opioid agonists. These agonists counteract the pronounced inhibitory effect of Sst-GABA neurons on vagal pre-motor neurons in the DMV that control gastric motility. These observations demonstrate that Sst-GABA neurons in the brainstem are crucial for regulating the activity of gastric output neurons in the DMV. Additionally, they suggest that these neurons serve as targets for converging CNS signals to regulate parasympathetic gastric function.


Asunto(s)
Neuronas GABAérgicas/fisiología , Optogenética/métodos , Fibras Parasimpáticas Posganglionares/fisiología , Antro Pilórico/inervación , Antro Pilórico/fisiología , Somatostatina/fisiología , Animales , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Fibras Parasimpáticas Posganglionares/efectos de los fármacos , Antro Pilórico/efectos de los fármacos , Estómago/efectos de los fármacos , Estómago/inervación , Estómago/fisiología , alfa-MSH/farmacología
2.
J Neurosci ; 33(33): 13286-99, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23946387

RESUMEN

Activation of melanocortin 4 receptors (MC4-Rs) in brain nuclei associated with food intake profoundly influences consummatory behavior. Of these nuclei, the dorsal motor vagal nucleus (DMV), which has a dense concentration of MC4-Rs, is an important regulator of gastric tone and motility. Hence, the present study sought to examine the role of MC4-Rs in this nucleus on these activities. Using an in vivo approach, MC4-R agonists, melanotan-II (MT-II) or α-melanocyte stimulating hormone (α-MSH), were unilaterally microinjected into the DMV of rats, and their effects were noted on gastric activity. MT-II decreased phasic contractions, whereas α-MSH increased their amplitude. Both effects were blocked by the MC4-R antagonist SHU9119 or by ipsilateral vagotomy. Microinjection of the agonists (MT-II and α-MSH) into the overlying nucleus of the solitary tract (NTS), an important component of "vago-vagal" gastric circuitry, decreased phasic contractions. In addition, α-MSH reduced gastric tone and mean arterial blood pressure. To study the underlying mechanisms of the effect of MC4-R stimulation on gastric activity, electrophysiological recordings were made from labeled DMV antrum neurons in rat pups and MC4-R(-/-) mice. Bath application of MT-II or α-MSH significantly reduced spontaneous action potentials (but not in MC4-R(-/-) mice). However, in low-calcium ACSF, MT-II decreased neuronal firing, whereas α-MSH increased it. These effects mirror those of our in vivo DMV studies. Altogether, our novel findings show that activation of MC4-Rs in the brainstem, particularly in the medial NTS by the endogenous peptide α-MSH, modulates gastric activity, which may have physiological relevance for food intake and gastric function.


Asunto(s)
Tronco Encefálico/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal/fisiología , Estómago/inervación , Animales , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Nervio Vago/fisiología , alfa-MSH/metabolismo , alfa-MSH/farmacología
3.
J Neurochem ; 129(4): 721-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24422997

RESUMEN

Chronic nicotine administration increases the density of brain α4ß2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4ß2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4ß2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking.


Asunto(s)
Ansiolíticos/uso terapéutico , Ansiedad/prevención & control , Azetidinas/uso terapéutico , Química Encefálica/efectos de los fármacos , Nicotina/toxicidad , Agonistas Nicotínicos/uso terapéutico , Piridinas/uso terapéutico , Receptores Nicotínicos/biosíntesis , Síndrome de Abstinencia a Sustancias/prevención & control , Tabaquismo/tratamiento farmacológico , Animales , Ansiolíticos/administración & dosificación , Ansiolíticos/farmacología , Ansiedad/inducido químicamente , Azetidinas/administración & dosificación , Azetidinas/farmacología , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Benzazepinas/uso terapéutico , Evaluación Preclínica de Medicamentos , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Agonistas Nicotínicos/farmacología , Piridinas/administración & dosificación , Piridinas/farmacología , Quinoxalinas/administración & dosificación , Quinoxalinas/farmacología , Quinoxalinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/genética , Cese del Uso de Tabaco , Tabaquismo/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Vareniclina , Aumento de Peso/efectos de los fármacos
4.
J Comp Neurol ; 531(15): 1562-1581, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507853

RESUMEN

The pyloric sphincter receives parasympathetic vagal innervation from the dorsal motor nucleus of the vagus (DMV). However, little is known about its higher-order neurons and the nuclei that engage the DMV neurons controlling the pylorus. The purpose of the present study was twofold. First, to identify neuroanatomical connections between higher-order neurons and the DMV. This was carried out by using the transneuronal pseudorabies virus PRV-152 injected into rat pylorus torus and examining the brains of these animals for PRV labeling. Second, to identify the specific sites within the DMV that functionally control the motility and tone of the pyloric sphincter. For these studies, experiments were performed to assess the effect of DMV stimulation on pylorus activity in urethane-anesthetized male rats. A strain gauge force transducer was sutured onto the pyloric tonus to monitor tone and motility. L-glutamate (500 pmol/30 nL) was microinjected unilaterally into the rostral and caudal areas of the DMV. Data from the first study indicated that neurons labeled with PRV occurred in the DMV, hindbrain raphe nuclei, midbrain Edinger-Westphal nucleus, ventral tegmental area, lateral habenula, and arcuate nucleus. Data from the second study indicated that microinjected L-glutamate into the rostral DMV results in contraction of the pylorus blocked by intravenously administered atropine and ipsilateral vagotomy. L-glutamate injected into the caudal DMV relaxed the pylorus. This response was abolished by ipsilateral vagotomy but not by intravenously administered atropine or L-NG-nitroarginine methyl ester (L-NAME). These findings identify the anatomical and functional brain neurocircuitry involved in controlling the pyloric sphincter. Our results also show that site-specific stimulation of the DMV can differentially influence the activity of the pyloric sphincter by separate vagal nerve pathways.


Asunto(s)
Ácido Glutámico , Píloro , Ratas , Masculino , Animales , Píloro/inervación , Nervio Vago/fisiología , Bulbo Raquídeo/fisiología , Atropina/farmacología
5.
Neurosci Lett ; 721: 134825, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32036029

RESUMEN

Morbidity and mortality attributed to type 2 diabetes have exponentially increased in the US. At exceptionally high risk is a subpopulation of persons with type 2 diabetes who smoke, which are shown to have decreased success rates of smoking cessation than euglycemic smokers. Preclinical research in our laboratory has shown that the rewarding effects of nicotine are enhanced in the streptozotocin and high-fat diet rodent model of diabetes. It is presently unclear whether this enhancement of nicotine reward can be demonstrated in other insulin resistant rat models. This study aimed to determine if a similar increase in nicotine reward is found in Goto-Kakizaki (GK) rats, a model of the spontaneous formation of insulin resistance in an inbred sub-strain of Wistar rat. Nicotine conditioned place preference (CPP) was examined in Sprague-Dawley (SD), Wistar, and GK rats. A robust nicotine CPP was found in SD and Wistar rats, but nicotine CPP was not detected in GK rats. Locomotor activity was also evaluated in all three strains, and GK rats demonstrated significantly less activity as compared to SD and Wistar rats. To further assess reward behavior in GK rats, consumption of saccharin solution was measured over a 48 -h period. GK rats showed a significant increase in saccharin intake compared to SD rats. These findings suggest that GK rats experience an enhanced hedonic processing as compared to SD rats. The lack of nicotine CPP in GK rats may be due to deficits in learning and memory, thus hindering their ability to acquire or express a place preference.


Asunto(s)
Condicionamiento Psicológico/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Nicotina/administración & dosificación , Recompensa , Sacarina/administración & dosificación , Animales , Condicionamiento Psicológico/fisiología , Diabetes Mellitus Tipo 2/genética , Masculino , Agonistas Nicotínicos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Ratas Wistar , Autoadministración , Especificidad de la Especie , Edulcorantes/administración & dosificación
6.
Brain Res ; 1658: 36-41, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28089665

RESUMEN

Sex differences in the analgesic effects of morphine have been previously reported in various models that represent the sensory component of pain. However, pain sensation is a complex process that consists of both sensory and affective components. It is presently unclear whether the analgesic effects of morphine between the sensory and affective components of pain are sexually dimorphic. Moreover, differences in morphine dose-response in the two components of pain have not been examined in male and female rats. Therefore, we examined the analgesic effects of morphine on the sensory and affective components of formalin-induced pain behaviors in male and female rats. To discern the sensory component, rats were pretreated with varying doses of morphine and then intraplantar formalin-induced paw flinches were measured. Morphine reduced the number of formalin-induced paw flinches at a treatment dose of 4.0mg/kg. Morphine analgesia was similar across the sexes in the early (phase 1) and late phase (phase 2) of the formalin test. To examine the affective component, rats were pretreated with varying doses of morphine, and then intraplantar formalin-induced conditioned place aversion (CPA) was examined. Formalin produced CPA, which was blocked by morphine at doses of 1.0mg/kg and higher in male and female rats. Lastly, formalin-induced cFos expression and the effects of systemic morphine were examined in the superficial dorsal horn of the spinal cord. Intraplantar formalin produced robust expression of cFos; however, morphine did not attenuate the cFos expression. These results demonstrate a notable dissociation of the analgesic effects of morphine by detecting a fourfold shift in the minimum effective dose between the sensory and affective components of formalin-induced spontaneous pain, that were similar between male and female rats. The findings further suggest disparate mechanisms involved in systemic morphine-induced analgesia in the two components of formalin-induced pain.


Asunto(s)
Afecto/efectos de los fármacos , Analgésicos Opioides/farmacología , Morfina/farmacología , Percepción del Dolor/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/fisiopatología , Afecto/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Formaldehído , Inmunohistoquímica , Vértebras Lumbares , Masculino , Dolor/patología , Dolor/psicología , Dimensión del Dolor , Percepción del Dolor/fisiología , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Caracteres Sexuales , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología
7.
Drug Alcohol Depend ; 140: 205-7, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24774962

RESUMEN

BACKGROUND: Tobacco use among persons with Type II diabetes exponentially increases negative health consequences and mortality rates. It is especially troubling that diabetic persons who smoke have a greater difficulty with tobacco cessation as compared to non-diabetic smokers. Diabetes is a metabolic syndrome that consists of insulin resistance due to disruptions in insulin signaling. We have previously shown that insulin depletion enhances the motivational effects of nicotine. METHODS: The present study expands our previous work by examining whether insulin resistance, produced by a high-fat diet (HFD) regimen, enhances the rewarding effects of nicotine, as measured by the conditioned place preference (CPP) paradigm. Rats were placed on either a regular diet (RD) or a HFD for 5 weeks, after which they were assessed for insulin resistance via blood glucose measurements after an insulin challenge. Rats then underwent a nicotine CPP study. RESULTS: The findings revealed that HFD produced insulin resistant and non-insulin resistant animals. Interestingly, the magnitude of nicotine CPP was larger in insulin resistant rats versus RD rats. Nicotine CPP was absent in non-insulin resistant animals. A similar increase in body weight was observed in insulin resistant and non-insulin resistant rats as compared to RD rats. These findings suggest that neither the increased body weight nor the HFD per se in the insulin resistant rats contributed to the enhanced nicotine reward. CONCLUSION: These present study suggests that insulin resistant rats undergo unique neurobiological changes related to a disruption in insulin signaling that promotes the rewarding effects of nicotine.


Asunto(s)
Resistencia a la Insulina/fisiología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Recompensa , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Condicionamiento Operante , Señales (Psicología) , Dieta , Masculino , Ratas , Ratas Sprague-Dawley
8.
J Med Chem ; 56(7): 3000-11, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23540678

RESUMEN

Neuronal acetylcholine receptors mediate the addictive effects of nicotine and may also be involved in alcohol addiction. Varenicline, an approved smoking cessation medication, showed clear efficacy in reducing alcohol consumption in heavy-drinking smokers. More recently, sazetidine-A, which selectively desensitizes α4ß2 nicotinic receptors, was shown to significantly reduce alcohol intake in a rat model. To develop novel therapeutics for treating alcohol use disorder, we designed and synthesized novel sazetidine-A analogues containing a methyl group at the 2-position of the pyridine ring. In vitro pharmacological studies revealed that some of the novel compounds showed overall pharmacological property profiles similar to that of sazetidine-A but exhibited reduced agonist activity across all nicotinic receptor subtypes tested. In rat studies, compound (S)-9 significantly reduced alcohol uptake. More importantly, preliminary results from studies in a ferret model indicate that these novel nAChR ligands have an improved adverse side-effect profile in comparison with that of varenicline.


Asunto(s)
Consumo de Bebidas Alcohólicas/prevención & control , Etanol/administración & dosificación , Piridinas/química , Piridinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Animales , Hurones , Ligandos , Espectroscopía de Resonancia Magnética , Ratas , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA