Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Matrix Biol ; 112: 132-154, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36007682

RESUMEN

Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mouse and zebrafish hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 in basement membrane integrity. We show that HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately 3.5-fold lower affinity and in a competitive manner. Furthermore, immunofluorescence and immunogold labeling revealed that HMCN1/Hmcn1 is localized close to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as the loss of Laminin-α5 (Lama5) or Hmcn1. Finally, combined partial loss-of-function studies indicated that nid2a genetically interacts with both hmcn1 and lama5. Together, these findings suggest that despite their mutually exclusive physical binding, hemicentins, nidogens, and laminins tightly cooperate and support each other during formation, maintenance, and function of basement membranes to confer tissue linkage.


Asunto(s)
Laminina , Pez Cebra , Animales , Membrana Basal/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Laminina/genética , Laminina/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
Int J Dev Neurosci ; 26(3-4): 339-43, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18258404

RESUMEN

Transcriptional factors and signalling molecules from intracellular metabolism modulate a complex set of events during brain development. Neurotransmitter and neuromodulator synthesis and their receptor expressions vary according to different stages of brain development. The dynamics of signalling systems is often accompanied by alterations in enzyme expression and activity. Adenosine is a neuromodulator that controls the release of several neurotransmitters, including acetylcholine, which is an important neurotransmitter during brain development. Caffeine is a non-specific antagonist of adenosine receptors and can reach the immature brain. We evaluated the effects of rat maternal caffeine intake (1g/L) on acetylcholine degradation and acetylcholinesterase expression from hippocampus of 7-, 14- and 21-day-old neonates in caffeine-treated and control groups. Caffeine was not able to change the age-dependent increase of acetylcholinesterase activity or the age-dependent decrease of acetylcholinesterase expression. However, caffeine promoted an increase of acetylcholinesterase activity (42%) without modifications on the level of acetylcholinesterase mRNA transcripts in 21-day-old rats. Considering the high score of phosphorylatable residues on acetylcholinesterase, this profile can be associated with a possible regulation by specific phosphorylation sites. These results highlight the ability of maternal caffeine intake to interfere on cholinergic neurotransmission during brain development.


Asunto(s)
Acetilcolina/metabolismo , Acetilcolinesterasa/efectos de los fármacos , Cafeína/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Efectos Tardíos de la Exposición Prenatal/enzimología , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Adenosina/metabolismo , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Animales Lactantes/crecimiento & desarrollo , Animales Lactantes/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Femenino , Masculino , Fosforilación/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Purinérgicos P1/efectos de los fármacos , Receptores Purinérgicos P1/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
3.
PLoS One ; 10(6): e0130688, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110643

RESUMEN

Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes--fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a--had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a)-ErbB2/3-AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a-ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape changes serves as a crucial mechanism of epithelial morphogenesis.


Asunto(s)
Aletas de Animales/embriología , Neurregulinas/metabolismo , Proteínas Oncogénicas v-erbB/metabolismo , Organogénesis/genética , Piel/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Alelos , Aletas de Animales/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Mutagénesis Insercional , Neurregulinas/genética , Proteínas Oncogénicas v-erbB/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Piel/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
4.
J Invest Dermatol ; 134(5): 1313-1322, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24232570

RESUMEN

Fraser syndrome (FS) is a phenotypically variable, autosomal recessive disorder characterized by cryptophthalmus, cutaneous syndactyly, and other malformations resulting from mutations in FRAS1, FREM2, and GRIP1. Transient embryonic epidermal blistering causes the characteristic defects of the disorder. Fras1, Frem1, and Frem2 form the extracellular Fraser complex, which is believed to stabilize the basement membrane. However, several cases of FS could not be attributed to mutations in FRAS1, FREM2, or GRIP1, and FS displays high clinical variability, suggesting that there is an additional genetic, possibly modifying contribution to this disorder. An extracellular matrix protein containing VWA-like domains related to those in matrilins and collagens (AMACO), encoded by the VWA2 gene, has a very similar tissue distribution to the Fraser complex proteins in both mouse and zebrafish. Here, we show that AMACO deposition is lost in Fras1-deficient zebrafish and mice and that Fras1 and AMACO interact directly via their chondroitin sulfate proteoglycan (CSPG) and P2 domains. Knockdown of vwa2, which alone causes no phenotype, enhances the phenotype of hypomorphic Fras1 mutant zebrafish. Together, our data suggest that AMACO represents a member of the Fraser complex.


Asunto(s)
Membrana Basal/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Síndrome de Fraser/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores de Tumor , Proteínas de Unión al Calcio , Matriz Extracelular/metabolismo , Femenino , Síndrome de Fraser/genética , Técnicas de Silenciamiento del Gen , Genes Recesivos , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fenotipo , Pez Cebra
5.
Comp Biochem Physiol C Toxicol Pharmacol ; 155(2): 247-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21946396

RESUMEN

Microcystins (MCs) constitute a family of cyanobacterial toxins, with more than 80 variants. These toxins are able to induce hepatotoxicity in several organisms mainly through the inhibition of protein phosphatases PP1 and PP2A and oxidative stress generation. Since recent evidence shows that MCs can either accumulate in brain or alter behavior patterns of fish species, in this study we tested the in vitro and in vivo effects of MC-LR at different concentrations on acetylcholinesterase (AChE) activity in zebrafish brain. In vivo studies showed that 100 µg/L MC-LR led to a significant increase in the AChE activity (27%) when zebrafish were exposed to the toxin dissolved in water, but did not cause any significant changes when injected intraperitoneally. In addition, semiquantitative RT-PCR analysis demonstrated that 100 µg/L MC-LR exposure also increased ache mRNA levels in zebrafish brain. The in vitro assays did not reveal any significant changes in AChE activity. These findings provide the first evidence that brain AChE is another potential target for MCs and suggest that the observed increases in AChE enzymatic activity and in ache transcript levels after MC-LR exposure depend, at least partially, on branchial uptake or ingestion.


Asunto(s)
Acetilcolinesterasa/genética , Encéfalo/efectos de los fármacos , Microcistinas/toxicidad , Activación Transcripcional/efectos de los fármacos , Proteínas de Pez Cebra/genética , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Hidrólisis/efectos de los fármacos , Inyecciones Intraperitoneales , Toxinas Marinas , Microcistinas/administración & dosificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA