Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39358015

RESUMEN

Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP) Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

2.
Am J Med Genet A ; 194(6): e63548, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38264805

RESUMEN

Pathogenic PHF21A variation causes PHF21A-related neurodevelopmental disorders (NDDs). Although amorphic alleles, including haploinsufficiency, have been established as a disease mechanism, increasing evidence suggests that missense variants as well as frameshift variants extending the BHC80 carboxyl terminus also cause disease. Expanding on these, we report a proposita with intellectual disability and overgrowth and a novel de novo heterozygous PHF21A splice variant (NM_001352027.3:c.[153+1G>C];[=]) causing skipping of exon 6, which encodes an in-frame BHC80 deletion (p.(Asn30_Gln51del)). This deletion disrupts a predicted leucine zipper domain and implicates this domain in BHC80 function and as a target of variation causing PHF21A-related NDDs. This extension of understanding emphasizes the application of RNA analysis in precision genomic medicine practice.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Empalme del ARN , Femenino , Humanos , Alelos , Exones/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Empalme del ARN/genética , Análisis de Secuencia de ARN , Niño
3.
Am J Med Genet A ; 191(8): 2219-2224, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196051

RESUMEN

Tandem splice acceptors (NAGNn AG) are a common mechanism of alternative splicing, but variants that are likely to generate or to disrupt tandem splice sites have rarely been reported as disease causing. We identify a pathogenic intron 23 CLTC variant (NM_004859.4:c.[3766-13_3766-5del];[=]) in a propositus with intellectual disability and behavioral problems. By RNAseq analysis of peripheral blood mRNA, this variant generates transcripts using cryptic proximal splice acceptors (NM_004859.4: r.3765_3766insTTCACAGAAAGGAACTAG, and NM_004859.4:r.3765_3766insAAAGGAACTAG). Given that the propositus expresses 38% the level of CLTC transcripts as unaffected controls, these variant transcripts, which encode premature termination codons, likely undergo nonsense mediated mRNA decay (NMD). This is the first functional evidence for CLTC haploinsufficiency as a cause of CLTC-related disorder and the first evidence that the generation of tandem alternative splice sites causes CLTC-related disorder. We suggest that variants creating tandem alternative splice sites are an underreported disease mechanism and that transcriptome-level analysis should be routinely pursued to define the pathogenicity of such variants.


Asunto(s)
Haploinsuficiencia , Sitios de Empalme de ARN , Humanos , Sitios de Empalme de ARN/genética , Haploinsuficiencia/genética , Empalme Alternativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mutación , Cadenas Pesadas de Clatrina/genética
4.
J Med Genet ; 59(1): 46-55, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257509

RESUMEN

Strabismus is a common condition, affecting 1%-4% of individuals. Isolated strabismus has been studied in families with Mendelian inheritance patterns. Despite the identification of multiple loci via linkage analyses, no specific genes have been identified from these studies. The current study is based on a seven-generation family with isolated strabismus inherited in an autosomal dominant manner. A total of 13 individuals from a common ancestor have been included for linkage analysis. Among these, nine are affected and four are unaffected. A single linkage signal has been identified at an 8.5 Mb region of chromosome 14q12 with a multipoint LOD (logarithm of the odds) score of 4.69. Disruption of this locus is known to cause FOXG1 syndrome (or congenital Rett syndrome; OMIM #613454 and *164874), in which 84% of affected individuals present with strabismus. With the incorporation of next-generation sequencing and in-depth bioinformatic analyses, a 4 bp non-coding deletion was prioritised as the top candidate for the observed strabismus phenotype. The deletion is predicted to disrupt regulation of FOXG1, which encodes a transcription factor of the Forkhead family. Suggestive of an autoregulation effect, the disrupted sequence matches the consensus FOXG1 and Forkhead family transcription factor binding site and has been observed in previous ChIP-seq studies to be bound by Foxg1 in early mouse brain development. Future study of this specific deletion may shed light on the regulation of FOXG1 expression and may enhance our understanding of the mechanisms contributing to strabismus and FOXG1 syndrome.


Asunto(s)
Factores de Transcripción Forkhead/genética , Proteínas del Tejido Nervioso/genética , Síndrome de Rett/genética , Eliminación de Secuencia , Estrabismo/genética , Adolescente , Anciano , Anciano de 80 o más Años , Animales , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Linaje , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
5.
N Engl J Med ; 380(15): 1433-1441, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30970188

RESUMEN

We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Ataxia/genética , Discapacidades del Desarrollo/genética , Glutaminasa/deficiencia , Glutaminasa/genética , Glutamina/metabolismo , Repeticiones de Microsatélite , Mutación , Atrofia/genética , Cerebelo/patología , Preescolar , Femenino , Genotipo , Glutamina/análisis , Humanos , Masculino , Fenotipo , Reacción en Cadena de la Polimerasa , Secuenciación Completa del Genoma
6.
Am J Med Genet A ; 188(10): 3089-3095, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946377

RESUMEN

Alternative use of short distance tandem sites such as NAGNn AG are a common mechanism of alternative splicing; however, single nucleotide variants are rarely reported as likely to generate or to disrupt tandem splice sites. We identify a pathogenic intron 5 STK11 variant (NM_000455.4:c.[735-6A>G];[=]) segregating with the mucocutaneous features but not the hamartomatous polyps of Peutz-Jeghers syndrome in two individuals. By RNAseq analysis of peripheral blood mRNA, this variant was shown to generate a novel and preferentially used tandem proximal splice acceptor (AAGTGAAG). The variant transcript (NM_000455.4:c.734_734 + 1insTGAAG), which encodes a frameshift (p.[Tyr246Glufs*43]) constituted 36%-43% of STK11 transcripts suggesting partial escape from nonsense mediated mRNA decay and translation of a truncated protein. A review of the ClinVar database identified other similar variants. We suggest that nucleotide changes creating or disrupting tandem alternative splice sites are a pertinent disease mechanism and require contextualization for clinical reporting. Additionally, we hypothesize that some pathogenic STK11 variants cause an attenuated phenotype.


Asunto(s)
Síndrome de Peutz-Jeghers , Quinasas de la Proteína-Quinasa Activada por el AMP , Empalme Alternativo , Codón sin Sentido , Humanos , Nucleótidos , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/patología
7.
PLoS Comput Biol ; 17(3): e1008815, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33750951

RESUMEN

Across the life sciences, processing next generation sequencing data commonly relies upon a computationally expensive process where reads are mapped onto a reference sequence. Prior to such processing, however, there is a vast amount of information that can be ascertained from the reads, potentially obviating the need for processing, or allowing optimized mapping approaches to be deployed. Here, we present a method termed FlexTyper which facilitates a "reverse mapping" approach in which high throughput sequence queries, in the form of k-mer searches, are run against indexed short-read datasets in order to extract useful information. This reverse mapping approach enables the rapid counting of target sequences of interest. We demonstrate FlexTyper's utility for recovering depth of coverage, and accurate genotyping of SNP sites across the human genome. We show that genotyping unmapped reads can correctly inform a sample's population, sex, and relatedness in a family setting. Detection of pathogen sequences within RNA-seq data was sensitive and accurate, performing comparably to existing methods, but with increased flexibility. We present two examples of ways in which this flexibility allows the analysis of genome features not well-represented in a linear reference. First, we analyze contigs from African genome sequencing studies, showing how they distribute across families from three distinct populations. Second, we show how gene-marking k-mers for the killer immune receptor locus allow allele detection in a region that is challenging for standard read mapping pipelines. The future adoption of the reverse mapping approach represented by FlexTyper will be enabled by more efficient methods for FM-index generation and biology-informed collections of reference queries. In the long-term, selection of population-specific references or weighting of edges in pan-population reference genome graphs will be possible using the FlexTyper approach. FlexTyper is available at https://github.com/wassermanlab/OpenFlexTyper.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Genoma Humano/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Alineación de Secuencia/métodos
8.
Nucleic Acids Res ; 48(D1): D87-D92, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31701148

RESUMEN

JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) for TFs across multiple species in six taxonomic groups. In this 8th release of JASPAR, the CORE collection has been expanded with 245 new PFMs (169 for vertebrates, 42 for plants, 17 for nematodes, 10 for insects, and 7 for fungi), and 156 PFMs were updated (125 for vertebrates, 28 for plants and 3 for insects). These new profiles represent an 18% expansion compared to the previous release. JASPAR 2020 comes with a novel collection of unvalidated TF-binding profiles for which our curators did not find orthogonal supporting evidence in the literature. This collection has a dedicated web form to engage the community in the curation of unvalidated TF-binding profiles. Moreover, we created a Q&A forum to ease the communication between the user community and JASPAR curators. Finally, we updated the genomic tracks, inference tool, and TF-binding profile similarity clusters. All the data is available through the JASPAR website, its associated RESTful API, and through the JASPAR2020 R/Bioconductor package.


Asunto(s)
Sitios de Unión , Biología Computacional , Bases de Datos Genéticas , Programas Informáticos , Factores de Transcripción , Animales , Genómica/métodos , Unión Proteica , Factores de Transcripción/metabolismo , Interfaz Usuario-Computador , Navegador Web
9.
Hum Mutat ; 42(4): 346-358, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368787

RESUMEN

Mendelian rare genetic diseases affect 5%-10% of the population, and with over 5300 genes responsible for ∼7000 different diseases, they are challenging to diagnose. The use of whole-genome sequencing (WGS) has bolstered the diagnosis rate significantly. The effective use of WGS relies on the ability to identify the disrupted gene responsible for disease phenotypes. This process involves genomic variant calling and prioritization, and is the beneficiary of improvements to sequencing technology, variant calling approaches, and increased capacity to prioritize genomic variants with potential pathogenicity. As analysis pipelines continue to improve, careful testing of their efficacy is paramount. However, real-life cases typically emerge anecdotally, and utilization of clinically sensitive and identifiable data for testing pipeline improvements is regulated and limiting. We identified the need for a gene-based variant simulation framework that can create mock rare disease scenarios, utilizing known pathogenic variants or through the creation of novel gene-disrupting variants. To fill this need, we present GeneBreaker, a tool that creates synthetic rare disease cases with utility for benchmarking variant calling approaches, testing the efficacy of variant prioritization, and as an educational mechanism for training diagnostic practitioners in the expanding field of genomic medicine. GeneBreaker is freely available at http://GeneBreaker.cmmt.ubc.ca.


Asunto(s)
Genómica , Enfermedades Raras , Simulación por Computador , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma
10.
Nature ; 519(7543): 349-52, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25731168

RESUMEN

Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Poliploidía , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Aneuploidia , Cromosomas Fúngicos/genética , Células Clonales/citología , Células Clonales/metabolismo , Diploidia , Aptitud Genética/genética , Haploidia , Tasa de Mutación , Mutación Puntual/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
11.
Nucleic Acids Res ; 46(4): 1756-1776, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29240919

RESUMEN

Histone deacetylase inhibitors (HDACIs) are known to alter gene expression by both up- and down-regulation of protein-coding genes in normal and cancer cells. However, the exact regulatory mechanisms of action remain uncharacterized. Here we investigated genome wide dose-dependent epigenetic and transcriptome changes in response to HDACI largazole in a transformed and a non-transformed cell line. Exposure to low nanomolar largazole concentrations (

Asunto(s)
Depsipéptidos/farmacología , Elementos de Facilitación Genéticos , Código de Histonas/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Tiazoles/farmacología , Acetilación , Línea Celular , Línea Celular Transformada , Citostáticos/farmacología , Relación Dosis-Respuesta a Droga , Elementos de Facilitación Genéticos/efectos de los fármacos , Genoma , Histona Desacetilasas/fisiología , Histonas/metabolismo , Oncogenes , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo
12.
PLoS Genet ; 12(1): e1005746, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26751950

RESUMEN

Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s) that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.


Asunto(s)
Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética , Alelos , Acuaporinas/biosíntesis , Acuaporinas/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Antecedentes Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas Represoras/biosíntesis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Factores de Transcripción/biosíntesis
13.
Mol Biol Evol ; 34(10): 2690-2703, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957510

RESUMEN

Polyploidization events have occurred during the evolution of many fungi, plant, and animal species and are thought to contribute to speciation and tumorigenesis, however little is known about how ploidy level contributes to adaptation at the molecular level. Here we integrate whole genome sequencing, RNA expression analysis, and relative fitness of ∼100 evolved clones at three ploidy levels. Independent haploid, diploid, and tetraploid populations were grown in a low carbon environment for 250 generations. We demonstrate that the key adaptive mutation in the evolved clones is predicted by a gene expression signature of just five genes. All of the adaptive mutations identified encompass a narrow set of genes, however the tetraploid clones gain a broader spectrum of adaptive mutations than haploid or diploid clones. While many of the adaptive mutations occur in genes that encode proteins with known roles in glucose sensing and transport, we discover mutations in genes with no canonical role in carbon utilization (IPT1 and MOT3), as well as identify novel dominant mutations in glucose signal transducers thought to only accumulate recessive mutations in carbon limited environments (MTH1 and RGT1). We conclude that polyploid cells explore more genotypic and phenotypic space than lower ploidy cells. Our study provides strong evidence for the beneficial role of polyploidization events that occur during the evolution of many species and during tumorigenesis.


Asunto(s)
Adaptación Fisiológica/genética , Saccharomyces cerevisiae/genética , Evolución Biológica , Carbono/metabolismo , Diploidia , Evolución Molecular Dirigida , Haploidia , Mutación , Poliploidía , Proteínas de Saccharomyces cerevisiae/genética , Tetraploidía
14.
Mamm Genome ; 27(11-12): 574-586, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27651241

RESUMEN

The Inbred Long- and Short-Sleep (ILS, ISS) mouse lines were selected for differences in acute ethanol sensitivity using the loss of righting response (LORR) as the selection trait. The lines show an over tenfold difference in LORR and, along with a recombinant inbred panel derived from them (the LXS), have been widely used to dissect the genetic underpinnings of acute ethanol sensitivity. Here we have sequenced the genomes of the ILS and ISS to investigate the DNA variants that contribute to their sensitivity difference. We identified ~2.7 million high-confidence SNPs and small indels and ~7000 structural variants between the lines; variants were found to occur in 6382 annotated genes. Using a hidden Markov model, we were able to reconstruct the genome-wide ancestry patterns of the eight inbred progenitor strains from which the ILS and ISS were derived, and found that quantitative trait loci that have been mapped for LORR were slightly enriched for DNA variants. Finally, by mapping and quantifying RNA-seq reads from the ILS and ISS to their strain-specific genomes rather than to the reference genome, we found a substantial improvement in a differential expression analysis between the lines. This work will help in identifying and characterizing the DNA sequence variants that contribute to the difference in ethanol sensitivity between the ILS and ISS and will also aid in accurate quantification of RNA-seq data generated from the LXS RIs.


Asunto(s)
Genoma/genética , Sitios de Carácter Cuantitativo/genética , Sueño/genética , Animales , Mapeo Cromosómico , Etanol/farmacología , Humanos , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Sueño/efectos de los fármacos , Sueño/fisiología
15.
Behav Genet ; 46(5): 693-704, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27085880

RESUMEN

Common SNPs in nicotinic acetylcholine receptor genes (CHRN genes) have been associated with drug behaviors and personality traits, but the influence of rare genetic variants is not well characterized. The goal of this project was to identify novel rare variants in CHRN genes in the Center for Antisocial Drug Dependence (CADD) and Genetics of Antisocial Drug Dependence (GADD) samples and to determine if low frequency variants are associated with antisocial drug dependence. Two samples of 114 and 200 individuals were selected using a case/control design including the tails of the phenotypic distribution of antisocial drug dependence. The capture, sequencing, and analysis of all variants in 16 CHRN genes (CHRNA1-7, 9, 10, CHRNB1-4, CHRND, CHRNG, CHRNE) were performed independently for each subject in each sample. Sequencing reads were aligned to the human reference sequence using BWA prior to variant calling with the Genome Analysis ToolKit (GATK). Low frequency variants (minor allele frequency < 0.05) were analyzed using SKAT-O and C-alpha to examine the distribution of rare variants among cases and controls. In our larger sample, the region containing the CHRNA6/CHRNB3 gene cluster was significantly associated with disease status using both SKAT-O and C-alpha (unadjusted p values <0.05). More low frequency variants in the CHRNA6/CHRNB3 gene region were observed in cases compared to controls. These data support a role for genetic variants in CHRN genes and antisocial drug behaviors.


Asunto(s)
Frecuencia de los Genes/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Receptores Nicotínicos/genética , Adolescente , Trastorno de Personalidad Antisocial , Femenino , Humanos , Masculino , Control de Calidad , Programas Informáticos , Adulto Joven
16.
J Mol Cell Cardiol ; 86: 54-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26141530

RESUMEN

Studying the importance of genetic factors in a desired cell type or tissue necessitates the use of precise genetic tools. With the introduction of bacteriophage Cre recombinase/loxP mediated DNA editing and promoter-specific Cre expression, it is feasible to generate conditional knockout mice in which particular genes are disrupted in a cell type-specific manner in vivo. In cardiac myocytes, this is often achieved through α-myosin heavy chain promoter (αMyHC)-driven Cre expression in conjunction with a loxP-site flanked gene of interest. Recent studies in other cell types demonstrate toxicity of Cre expression through induction of DNA damage. However, it is unclear to what extent the traditionally used αMyHC-Cre line [1] may exhibit cardiotoxicity. Further, the genotype of αMyHC-Cre(+/-) is not often included as a control group in cardiac myocyte-specific knockout studies. Here we present evidence that these αMyHC-Cre(+/-) mice show molecular signs of cardiac toxicity by 3months of age and exhibit decreased cardiac function by 6months of age compared to wild-type littermates. Hearts from αMyHC-Cre(+/-) mice also display evidence of fibrosis, inflammation, and DNA damage. Interestingly, some of the early functional changes observed in αMyHC-Cre(+/-) mice are sexually dimorphic. Given the high level of Cre recombinase expression resulting from expression from the αMyHC promoter, we asked if degenerate loxP-like sites naturally exist in the mouse genome and if so, whether they are affected by Cre in the absence of canonical loxP-sites. Using a novel bioinformatics search tool, we identified 619 loxP-like sites with 4 or less mismatches to the canonical loxP-site. 227 sites overlapped with annotated genes and 55 of these genes were expressed in cardiac muscle. Expression of ~26% of the 27 genes tested was disrupted in αMyHC-Cre(+/-) mice indicating potential targeting by Cre. Taken together, these results highlight both the importance of using αMyHC-Cre mice as controls in conditional knockout studies as well as the need for a less cardiotoxic Cre driver for the field.


Asunto(s)
Cardiotoxicidad/genética , Integrasas/genética , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Animales , Cardiotoxicidad/patología , Daño del ADN/genética , Genotipo , Humanos , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/biosíntesis , Regiones Promotoras Genéticas
18.
Alcohol Clin Exp Res ; 39(4): 611-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25833023

RESUMEN

BACKGROUND: We previously reported that acute functional tolerance (AFT) to the hypnotic effects of alcohol was significantly correlated with drinking in the dark (DID) in the LXS recombinant inbred panel, but only in mice that had been pretreated with alcohol. Here, we have conducted quantitative trait locus (QTL) mapping for AFT. DNA sequencing of the progenitor ILS and ISS strains and microarray analyses were also conducted to identify candidate genes and functional correlates. METHODS: LXS mice were given either saline or alcohol (5 g/kg) on day 1 and then tested for loss of righting reflex AFT on day 2. QTLs were mapped using standard procedures. Two microarray analyses from brain were conducted: (i) naïve LXS mice and (ii) an alcohol treatment time course in the ILS and ISS. The full genomes of the ILS and ISS were sequenced to a depth of approximately 30×. RESULTS: A significant QTL for AFT in the alcohol pretreatment group was mapped to distal chromosome 4; numerous suggestive QTLs were also mapped. Preference drinking and DID have previously been mapped to the chromosome 4 locus. The credible interval of the significant chromosome 4 QTL spanned 23 Mb and included 716 annotated genes of which 150 had at least 1 nonsynonymous single nucleotide polymorphism or small indel that differed between the ILS and ISS; expression of 48 of the genes was cis-regulated. Enrichment analysis indicated broad functional categories underlying AFT, including proteolysis, transcription regulation, chromatin modification, protein kinase activity, and apoptosis. CONCLUSIONS: The chromosome 4 QTL is a key region containing possibly pleiotropic genes for AFT and drinking behavior. Given that the region contains many viable candidates and a large number of the genes in the interval fall into 1 or more of the enriched functional categories, we postulate that many genes of varying effect size contribute to the observed QTL effect.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Tolerancia a Medicamentos/genética , Etanol/farmacología , Sitios de Carácter Cuantitativo/genética , Reflejo de Enderezamiento/efectos de los fármacos , Animales , Animales Endogámicos/genética , Encéfalo/efectos de los fármacos , Mapeo Cromosómico , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Genotipo , Masculino , Ratones
19.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496498

RESUMEN

Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

20.
J Exp Med ; 220(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36884218

RESUMEN

STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.


Asunto(s)
Asma , Hipersensibilidad a los Alimentos , Humanos , Factor de Transcripción STAT6 , Mutación con Ganancia de Función , Inmunoglobulina E/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA