Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(3): 581-594.e12, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656895

RESUMEN

Clear-cell renal cell carcinoma (ccRCC) exhibits a broad range of metastatic phenotypes that have not been systematically studied to date. Here, we analyzed 575 primary and 335 metastatic biopsies across 100 patients with metastatic ccRCC, including two cases sampledat post-mortem. Metastatic competence was afforded by chromosome complexity, and we identify 9p loss as a highly selected event driving metastasis and ccRCC-related mortality (p = 0.0014). Distinct patterns of metastatic dissemination were observed, including rapid progression to multiple tissue sites seeded by primary tumors of monoclonal structure. By contrast, we observed attenuated progression in cases characterized by high primary tumor heterogeneity, with metastatic competence acquired gradually and initial progression to solitary metastasis. Finally, we observed early divergence of primitive ancestral clones and protracted latency of up to two decades as a feature of pancreatic metastases.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Mutación , Metástasis de la Neoplasia , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Biopsia , Mapeo Cromosómico , Cromosomas Humanos Par 14 , Cromosomas Humanos Par 9 , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Trombosis , Resultado del Tratamiento
2.
Plant Cell ; 26(12): 4602-16, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25527708

RESUMEN

DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Alelos , Cruzamientos Genéticos , ADN (Citosina-5-)-Metiltransferasas/genética , Epigenómica , Genes de Plantas , Mutación
3.
Nature ; 479(7374): 534-7, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22037309

RESUMEN

Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes.


Asunto(s)
Encéfalo/metabolismo , Mutación de Línea Germinal/genética , Mutagénesis Insercional/genética , Retroelementos/genética , Elementos Alu/genética , Secuencia de Bases/genética , Núcleo Caudado/metabolismo , Evolución Clonal/genética , Variaciones en el Número de Copia de ADN/genética , Epistasis Genética , Genoma Humano/genética , Hipocampo/metabolismo , Histona Desacetilasa 1/genética , Humanos , Mosaicismo , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos/genética , Reacción en Cadena de la Polimerasa , Transactivadores , Factores de Transcripción/genética
4.
Nucleic Acids Res ; 43(12): e81, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-25813045

RESUMEN

We present a capture-based approach for bisulfite-converted DNA that allows interrogation of pre-defined genomic locations, allowing quantitative and qualitative assessments of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) at CG dinucleotides and in non-CG contexts (CHG, CHH) in mammalian and plant genomes. We show the technique works robustly and reproducibly using as little as 500 ng of starting DNA, with results correlating well with whole genome bisulfite sequencing data, and demonstrate that human DNA can be tested in samples contaminated with microbial DNA. This targeting approach will allow cell type-specific designs to maximize the value of 5mC and 5hmC sequencing.


Asunto(s)
5-Metilcitosina/análisis , Citosina/análogos & derivados , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Alelos , Animales , Línea Celular , Citosina/análisis , Metilación de ADN , Genómica/métodos , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Sulfitos
5.
Mol Cell Proteomics ; 13(6): 1585-97, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24705123

RESUMEN

Antibodies are of importance for the field of proteomics, both as reagents for imaging cells, tissues, and organs and as capturing agents for affinity enrichment in mass-spectrometry-based techniques. It is important to gain basic insights regarding the binding sites (epitopes) of antibodies and potential cross-reactivity to nontarget proteins. Knowledge about an antibody's linear epitopes is also useful in, for instance, developing assays involving the capture of peptides obtained from trypsin cleavage of samples prior to mass spectrometry analysis. Here, we describe, for the first time, the design and use of peptide arrays covering all human proteins for the analysis of antibody specificity, based on parallel in situ photolithic synthesis of a total of 2.1 million overlapping peptides. This has allowed analysis of on- and off-target binding of both monoclonal and polyclonal antibodies, complemented with precise mapping of epitopes based on full amino acid substitution scans. The analysis suggests that linear epitopes are relatively short, confined to five to seven residues, resulting in apparent off-target binding to peptides corresponding to a large number of unrelated human proteins. However, subsequent analysis using recombinant proteins suggests that these linear epitopes have a strict conformational component, thus giving us new insights regarding how antibodies bind to their antigens.


Asunto(s)
Anticuerpos/genética , Mapeo Epitopo/métodos , Biosíntesis de Péptidos/genética , Proteoma , Secuencia de Aminoácidos , Anticuerpos/inmunología , Sitios de Unión , Epítopos/genética , Epítopos/inmunología , Humanos , Espectrometría de Masas , Biosíntesis de Péptidos/inmunología , Tripsina
6.
Plant J ; 79(6): 993-1008, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24947485

RESUMEN

Switchgrass (Panicum virgatum) is a polyploid, outcrossing grass species native to North America and has recently been recognized as a potential biofuel feedstock crop. Significant phenotypic variation including ploidy is present across the two primary ecotypes of switchgrass, referred to as upland and lowland switchgrass. The tetraploid switchgrass genome is approximately 1400 Mbp, split between two subgenomes, with significant repetitive sequence content limiting the efficiency of re-sequencing approaches for determining genome diversity. To characterize genetic diversity in upland and lowland switchgrass as a first step in linking genotype to phenotype, we designed an exome capture probe set based on transcript assemblies that represent approximately 50 Mb of annotated switchgrass exome sequences. We then evaluated and optimized the probe set using solid phase comparative genome hybridization and liquid phase exome capture followed by next-generation sequencing. Using the optimized probe set, we assessed variation in the exomes of eight switchgrass genotypes representing tetraploid lowland and octoploid upland cultivars to benchmark our exome capture probe set design. We identified ample variation in the switchgrass genome including 1,395,501 single nucleotide polymorphisms (SNPs), 8173 putative copy number variants and 3336 presence/absence variants. While the majority of the SNPs (84%) detected was bi-allelic, a substantial number was tri-allelic with limited occurrence of tetra-allelic polymorphisms consistent with the heterozygous and polyploid nature of the switchgrass genome. Collectively, these data demonstrate the efficacy of exome capture for discovery of genome variation in a polyploid species with a large, repetitive and heterozygous genome.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Variación Genética , Genoma de Planta/genética , Panicum/genética , Alelos , Secuencia de Bases , Ecotipo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Poliploidía , Análisis de Secuencia de ADN
7.
Nat Genet ; 38(9): 1038-42, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906162

RESUMEN

Genomic disorders are characterized by the presence of flanking segmental duplications that predispose these regions to recurrent rearrangement. Based on the duplication architecture of the genome, we investigated 130 regions that we hypothesized as candidates for previously undescribed genomic disorders. We tested 290 individuals with mental retardation by BAC array comparative genomic hybridization and identified 16 pathogenic rearrangements, including de novo microdeletions of 17q21.31 found in four individuals. Using oligonucleotide arrays, we refined the breakpoints of this microdeletion, defining a 478-kb critical region containing six genes that were deleted in all four individuals. We mapped the breakpoints of this deletion and of four other pathogenic rearrangements in 1q21.1, 15q13, 15q24 and 17q12 to flanking segmental duplications, suggesting that these are also sites of recurrent rearrangement. In common with the 17q21.31 deletion, these breakpoint regions are sites of copy number polymorphism in controls, indicating that these may be inherently unstable genomic regions.


Asunto(s)
Duplicación de Gen , Genoma Humano , Discapacidad Intelectual/genética , Rotura Cromosómica , Deleción Cromosómica , Cromosomas Artificiales Bacterianos , Cromosomas Humanos Par 17 , Dosificación de Gen , Reordenamiento Génico , Heterocigoto , Humanos , Hibridación Fluorescente in Situ , Mosaicismo , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapeo Físico de Cromosoma , Polimorfismo Genético
8.
Plant J ; 76(3): 494-505, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23889683

RESUMEN

Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes.


Asunto(s)
Exoma , Genoma de Planta , Genómica/métodos , Hordeum/genética , Genómica/tendencias , Ploidias , Polimorfismo de Nucleótido Simple , Triticum/genética
9.
Hum Mutat ; 34(10): 1439-48, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23893877

RESUMEN

Copy number variation (CNV) is a common source of genetic variation that has been implicated in many genomic disorders. This has resulted in the widespread application of genomic microarrays as a first-tier diagnostic tool for CNV detection. More recently, whole-exome sequencing (WES) has been proven successful for the detection of clinically relevant point mutations and small insertion-deletions exome wide. We evaluate the utility of short-read WES (SOLiD 5500xl) to detect clinically relevant CNVs in DNA from 10 patients with intellectual disability and compare these results to data from two independent high-resolution microarrays. Eleven of the 12 clinically relevant CNVs were detected via read-depth analysis of WES data; a heterozygous single-exon deletion remained undetected by all algorithms evaluated. Although the detection power of WES for small CNVs currently does not match that of high-resolution microarray platforms, we show that the majority (88%) of rare coding CNVs containing three or more exons are successfully identified by WES. These results show that the CNV detection resolution of WES is comparable to that of medium-resolution genomic microarrays commonly used as clinical assays. The combined detection of point mutations, indels, and CNVs makes WES a very attractive first-tier diagnostic test for genetically heterogeneous disorders.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos , Pruebas Genéticas/métodos , Estudio de Asociación del Genoma Completo , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Reproducibilidad de los Resultados
10.
Plant J ; 72(3): 390-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22731681

RESUMEN

A careful analysis of two maize recombinant inbred lines (RILs) relative to their inbred parents revealed the presence of several hundred apparently de novo copy number variants (CNVs). These changes in genome content were validated via both PCR and whole exome-array capture-and-sequencing experiments. One hundred and eighty-five genomic regions, which overlap with 38 high-confidence genes, exhibited apparently de novo copy number variation (CNV) in these two RILs and in many instances the same apparently de novo CNV events were observed in multiple RILs. Further analyses revealed that these recurrent apparently de novo CNVs were caused by segregation of single-copy homologous sequences that are located in non-allelic positions in the two parental inbred lines. F(1) individuals derived from these inbred lines will be hemizygous for each of these non-allelic homologs but RIL genotypes will contain these sequences at zero, one or two genomic loci. Hence, the segregation of non-allelic homologs may contribute to transgressive segregation. Indeed, statistical associations between phenotypic quantitative trait loci and genomic losses were observed for two of 14 tested pairs of non-allelic homologs.


Asunto(s)
Segregación Cromosómica/genética , Variaciones en el Número de Copia de ADN/genética , ADN de Plantas/genética , Genoma de Planta/genética , Zea mays/genética , Mapeo Cromosómico , Hibridación Genómica Comparativa , Exoma , Exones , Dosificación de Gen/genética , Genotipo , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Sitios de Carácter Cuantitativo
11.
Carcinogenesis ; 33(7): 1270-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22510280

RESUMEN

Lung cancer is the leading cause of cancer-related death, with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Most lung cancer is caused by the accumulation of genomic alterations due to tobacco exposure. To uncover its mutational landscape, we performed whole-exome sequencing in 31 NSCLCs and their matched normal tissue samples. We identified both common and unique mutation spectra and pathway activation in lung adenocarcinomas and squamous cell carcinomas, two major histologies in NSCLC. In addition to identifying previously known lung cancer genes (TP53, KRAS, EGFR, CDKN2A and RB1), the analysis revealed many genes not previously implicated in this malignancy. Notably, a novel gene CSMD3 was identified as the second most frequently mutated gene (next to TP53) in lung cancer. We further demonstrated that loss of CSMD3 results in increased proliferation of airway epithelial cells. The study provides unprecedented insights into mutational processes, cellular pathways and gene networks associated with lung cancer. Of potential immediate clinical relevance, several highly mutated genes identified in our study are promising druggable targets in cancer therapy including ALK, CTNNA3, DCC, MLL3, PCDHIIX, PIK3C2B, PIK3CG and ROCK2.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Exones , Neoplasias Pulmonares/genética , Mutación , Línea Celular Tumoral , Humanos
12.
Plant Biotechnol J ; 10(6): 733-42, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22703335

RESUMEN

Bread wheat, Triticum aestivum, is an allohexaploid composed of the three distinct ancestral genomes, A, B and D. The polyploid nature of the wheat genome together with its large size has limited our ability to generate the significant amount of sequence data required for whole genome studies. Even with the advent of next-generation sequencing technology, it is still relatively expensive to generate whole genome sequences for more than a few wheat genomes at any one time. To overcome this problem, we have developed a targeted-capture re-sequencing protocol based upon NimbleGen array technology to capture and characterize 56.5 Mb of genomic DNA with sequence similarity to over 100 000 transcripts from eight different UK allohexaploid wheat varieties. Using this procedure in conjunction with a carefully designed bioinformatic procedure, we have identified more than 500 000 putative single-nucleotide polymorphisms (SNPs). While 80% of these were variants between the homoeologous genomes, A, B and D, a significant number (20%) were putative varietal SNPs between the eight varieties studied. A small number of these latter polymorphisms were experimentally validated using KASPar technology and 94% proved to be genuine. The procedures described here to sequence a large proportion of the wheat genome, and the various SNPs identified should be of considerable use to the wider wheat community.


Asunto(s)
Exoma , Genoma de Planta , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Triticum/genética , Alelos , Poliploidía , Especificidad de la Especie
13.
Plant Physiol ; 155(2): 645-55, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21115807

RESUMEN

Soybean (Glycine max) is a self-pollinating species that has relatively low nucleotide polymorphism rates compared with other crop species. Despite the low rate of nucleotide polymorphisms, a wide range of heritable phenotypic variation exists. There is even evidence for heritable phenotypic variation among individuals within some cultivars. Williams 82, the soybean cultivar used to produce the reference genome sequence, was derived from backcrossing a Phytophthora root rot resistance locus from the donor parent Kingwa into the recurrent parent Williams. To explore the genetic basis of intracultivar variation, we investigated the nucleotide, structural, and gene content variation of different Williams 82 individuals. Williams 82 individuals exhibited variation in the number and size of introgressed Kingwa loci. In these regions of genomic heterogeneity, the reference Williams 82 genome sequence consists of a mosaic of Williams and Kingwa haplotypes. Genomic structural variation between Williams and Kingwa was maintained between the Williams 82 individuals within the regions of heterogeneity. Additionally, the regions of heterogeneity exhibited gene content differences between Williams 82 individuals. These findings show that genetic heterogeneity in Williams 82 primarily originated from the differential segregation of polymorphic chromosomal regions following the backcross and single-seed descent generations of the breeding process. We conclude that soybean haplotypes can possess a high rate of structural and gene content variation, and the impact of intracultivar genetic heterogeneity may be significant. This detailed characterization will be useful for interpreting soybean genomic data sets and highlights important considerations for research communities that are developing or utilizing a reference genome sequence.


Asunto(s)
Variación Genética , Genoma de Planta , Glycine max/genética , Hibridación Genómica Comparativa , ADN de Plantas/genética , Haplotipos , Endogamia , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
14.
PLoS Genet ; 5(11): e1000734, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19956538

RESUMEN

Following the domestication of maize over the past approximately 10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop.


Asunto(s)
Dosificación de Gen , Variación Genética , Genoma de Planta , Eliminación de Secuencia , Zea mays/genética , Secuencia de Bases , Productos Agrícolas/genética , Genes de Plantas , Genotipo , Haplotipos
15.
Proc Natl Acad Sci U S A ; 106(31): 12950-5, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19651600

RESUMEN

Cytogenetic analysis of acute myeloid leukemia (AML) cells has accelerated the identification of genes important for AML pathogenesis. To complement cytogenetic studies and to identify genes altered in AML genomes, we performed genome-wide copy number analysis with paired normal and tumor DNA obtained from 86 adult patients with de novo AML using 1.85 million feature SNP arrays. Acquired copy number alterations (CNAs) were confirmed using an ultra-dense array comparative genomic hybridization platform. A total of 201 somatic CNAs were found in the 86 AML genomes (mean, 2.34 CNAs per genome), with French-American-British system M6 and M7 genomes containing the most changes (10-29 CNAs per genome). Twenty-four percent of AML patients with normal cytogenetics had CNA, whereas 40% of patients with an abnormal karyotype had additional CNA detected by SNP array, and several CNA regions were recurrent. The mRNA expression levels of 57 genes were significantly altered in 27 of 50 recurrent CNA regions <5 megabases in size. A total of 8 uniparental disomy (UPD) segments were identified in the 86 genomes; 6 of 8 UPD calls occurred in samples with a normal karyotype. Collectively, 34 of 86 AML genomes (40%) contained alterations not found with cytogenetics, and 98% of these regions contained genes. Of 86 genomes, 43 (50%) had no CNA or UPD at this level of resolution. In this study of 86 adult AML genomes, the use of an unbiased high-resolution genomic screen identified many genes not previously implicated in AML that may be relevant for pathogenesis, along with many known oncogenes and tumor suppressor genes.


Asunto(s)
Dosificación de Gen , Leucemia Mieloide Aguda/genética , Mutación , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Femenino , Genoma , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Translocación Genética
16.
Bone ; 158: 115716, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33127576

RESUMEN

Osteosarcoma is an aggressive tumor of the bone that primarily affects young adults and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. While inactivation of tumor protein p53 (TP53) is nearly universal other high frequency mutations or structural variations have not been identified. Despite this genomic heterogeneity, key conserved transcriptional programs associated with survival have been identified across human, canine and induced murine osteosarcoma. The epigenomic landscape, including DNA methylation, plays a key role in establishing transcriptional programs in all cell types. The role of epigenetic dysregulation has been studied in a variety of cancers but has yet to be explored at scale in osteosarcoma. Here we examined genome-wide DNA methylation patterns in 24 human and 44 canine osteosarcoma samples identifying groups of highly correlated DNA methylation marks in human and canine osteosarcoma samples. We also link specific DNA methylation patterns to key transcriptional programs in both human and canine osteosarcoma. Building on previous work, we built a DNA methylation-based measure for the presence and abundance of various immune cell types in osteosarcoma. Finally, we determined that the underlying state of the tumor, and not changes in cell composition, were the main driver of differences in DNA methylation across the human and canine samples. SIGNIFICANCE: Genome wide comparison of DNA methylation patterns in osteosarcoma across two species lays the ground work for the exploration of DNA methylation programs that help establish conserved transcriptional programs in the context of varied mutational landscapes.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Neoplasias Óseas/genética , Metilación de ADN/genética , Perros , Epigenómica , Genómica , Ratones , Osteosarcoma/genética , Osteosarcoma/patología
17.
Front Neurol ; 13: 1016377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588876

RESUMEN

Background: Progressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML. Methods: We hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years). Results: The four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7-20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Conclusion: For the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease.

18.
Genome Biol ; 23(1): 141, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768876

RESUMEN

BACKGROUND: Clinical laboratories routinely use formalin-fixed paraffin-embedded (FFPE) tissue or cell block cytology samples in oncology panel sequencing to identify mutations that can predict patient response to targeted therapy. To understand the technical error due to FFPE processing, a robustly characterized diploid cell line was used to create FFPE samples with four different pre-tissue processing formalin fixation times. A total of 96 FFPE sections were then distributed to different laboratories for targeted sequencing analysis by four oncopanels, and variants resulting from technical error were identified. RESULTS: Tissue sections that fail more frequently show low cellularity, lower than recommended library preparation DNA input, or target sequencing depth. Importantly, sections from block surfaces are more likely to show FFPE-specific errors, akin to "edge effects" seen in histology, while the inner samples display no quality degradation related to fixation time. CONCLUSIONS: To assure reliable results, we recommend avoiding the block surface portion and restricting mutation detection to genomic regions of high confidence.


Asunto(s)
Formaldehído , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Adhesión en Parafina , Análisis de Secuencia de ADN , Fijación del Tejido
19.
Plant J ; 62(5): 898-909, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20230488

RESUMEN

Sequence capture technologies, pioneered in mammalian genomes, enable the resequencing of targeted genomic regions. Most capture protocols require blocking DNA, the production of which in large quantities can prove challenging. A blocker-free, two-stage capture protocol was developed using NimbleGen arrays. The first capture depletes the library of repetitive sequences, while the second enriches for target loci. This strategy was used to resequence non-repetitive portions of an approximately 2.2 Mb chromosomal interval and a set of 43 genes dispersed in the 2.3 Gb maize genome. This approach achieved approximately 1800-3000-fold enrichment and 80-98% coverage of targeted bases. More than 2500 SNPs were identified in target genes. Low rates of false-positive SNP predictions were obtained, even in the presence of captured paralogous sequences. Importantly, it was possible to recover novel sequences from non-reference alleles. The ability to design novel repeat-subtraction and target capture arrays makes this technology accessible in any species.


Asunto(s)
Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ADN/métodos , Hibridación Genómica Comparativa , ADN de Plantas/genética , Genes de Plantas , Polimorfismo de Nucleótido Simple , Zea mays/genética
20.
Nature ; 436(7052): 876-80, 2005 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-15988478

RESUMEN

In eukaryotic cells, transcription of every protein-coding gene begins with the assembly of an RNA polymerase II preinitiation complex (PIC) on the promoter. The promoters, in conjunction with enhancers, silencers and insulators, define the combinatorial codes that specify gene expression patterns. Our ability to analyse the control logic encoded in the human genome is currently limited by a lack of accurate information regarding the promoters for most genes. Here we describe a genome-wide map of active promoters in human fibroblast cells, determined by experimentally locating the sites of PIC binding throughout the human genome. This map defines 10,567 active promoters corresponding to 6,763 known genes and at least 1,196 un-annotated transcriptional units. Features of the map suggest extensive use of multiple promoters by the human genes and widespread clustering of active promoters in the genome. In addition, examination of the genome-wide expression profile reveals four general classes of promoters that define the transcriptome of the cell. These results provide a global view of the functional relationships among transcriptional machinery, chromatin structure and gene expression in human cells.


Asunto(s)
Regulación de la Expresión Génica/genética , Genoma Humano , Mapeo Físico de Cromosoma , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/metabolismo , Genómica , Humanos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA