Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 139(8): 1184-1197, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33908607

RESUMEN

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired antimetabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is reprogramming gene expression in a metabolism-dependent manner. MondoA (also known as Myc-associated factor X-like protein X-interacting protein [MLXIP]), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets, we found that MondoA overexpression is associated with worse survival in pediatric common acute lymphoblastic leukemia (ALL; B-precursor ALL [B-ALL]). Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and RNA-interference approaches, we observed that MondoA depletion reduces the transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced pyruvate dehydrogenase activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Estrés Fisiológico , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
2.
Nature ; 555(7696): 321-327, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29489754

RESUMEN

Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.


Asunto(s)
Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias/clasificación , Neoplasias/genética , Adolescente , Adulto , Niño , Cromotripsis , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Diploidia , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal/genética , Humanos , Terapia Molecular Dirigida , Tasa de Mutación , Neoplasias/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , Adulto Joven
4.
Exp Cell Res ; 372(1): 25-34, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30193837

RESUMEN

Osteoblasts are adherent cells, and under physiological conditions they attach to both mineralized and non-mineralized osseous surfaces. However, how exactly osteoblasts respond to these different osseous surfaces is largely unknown. Our hypothesis was that the state of matrix mineralization provides a functional signal to osteoblasts. To assess the osteoblast response to mineralized compared to demineralized osseous surfaces, we developed and validated a novel tissue surface model. We demonstrated that with the exception of the absence of mineral, the mineralized and demineralized surfaces were similar in molecular composition as determined, for example, by collagen content and maturity. Subsequently, we used the human osteoblastic cell line MG63 in combination with genome-wide gene set enrichment analysis (GSEA) to record and compare the gene expression signatures on mineralized and demineralized surfaces. Assessment of the 5 most significant gene sets showed on mineralized surfaces an enrichment exclusively of genes sets linked to protein synthesis, while on the demineralized surfaces 3 of the 5 enriched gene sets were associated with the matrix. Focusing on these three gene sets, we observed not only the expected structural components of the bone matrix, but also gene products, such as HMCN1 or NID2, that are likely to act as temporal migration guides. Together, these findings suggest that in osteoblasts mineralized and demineralized osseous surfaces favor intracellular protein production and matrix formation, respectively. Further, they demonstrate that the mineralization state of bone independently controls gene expression in osteoblastic cells.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Calcificación Fisiológica/genética , Proteínas de la Matriz Extracelular/genética , Matriz Extracelular/genética , Osteoblastos/metabolismo , Tibia/metabolismo , Animales , Densidad Ósea , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Unión al Calcio , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Osteoblastos/citología , Cultivo Primario de Células , Biosíntesis de Proteínas , Transducción de Señal , Porcinos , Tibia/citología
5.
J Immunol ; 194(9): 4055-7, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25888699

RESUMEN

Hiromi Kubagawa and John E. Coligan coordinated an online meeting to define an appropriate nomenclature for the cell surface glycoprotein presently designated by different names: Toso, Fas apoptosis inhibitory molecule 3 (FAIM3), and IgM FcR (FcµR). FAIM3 and Faim3 are the currently approved symbols for the human and mouse genes, respectively, in the National Center for Biotechnology Information, Ensembl, and other databases. However, recent functional results reported by several groups of investigators strongly support a recommendation for renaming FAIM3/Faim3 as FCMR/Fcmr, a name better reflecting its physiological function as the FcR for IgM. Participants included 12 investigators involved in studying Toso/FAIM3(Faim3)/FµR, representatives from the Human Genome Nomenclature Committee (Ruth Seal) and the Mouse Genome Nomenclature Committee (Monica McAndrews), and an observer from the IgM research field (Michael Carroll). In this article, we provide a brief background of the key research on the Toso/FAIM3(Faim3)/FcµR proteins, focusing on the ligand specificity and functional activity, followed by a brief summary of discussion about adopting a single name for this molecule and its gene and a resulting recommendation for genome nomenclature committees.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras , Proteínas de la Membrana , Terminología como Asunto , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Portadoras/genética , Humanos , Inmunoglobulina M , Proteínas de la Membrana/genética , Ratones , Receptores Fc/clasificación
6.
Genes Chromosomes Cancer ; 53(7): 622-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24723486

RESUMEN

Round cell sarcomas harboring CIC-DUX4 fusions have recently been described as highly aggressive soft tissue tumors of children and young adults. Due to partial morphologic and immunohistochemical overlap with Ewing sarcoma (ES), CIC-DUX4-positive tumors have generally been classified as ES-like and managed similarly; however, a systematic comparison at the molecular and immunohistochemical levels between these two groups has not yet been conducted. Based on an initial observation that CIC-DUX4-positive tumors show nuclear immunoreactivity for WT1 and ETS transcription factors, FLI1 and ERG, we performed a detailed immunohistochemical and molecular analysis including these markers, to further investigate the relationship between CIC-DUX4 tumors and ES. The study group included 21 CIC-DUX4-positive sarcomas and 20 EWSR1-rearranged ES. Immunohistochemically, CIC-DUX4 sarcomas showed membranous CD99 positivity in 18 (86%) cases, but only 5 (24%) with a diffuse pattern, while WT1 and FLI1 were strongly positive in all cases. ERG was positive in 18% of cases. All ES expressed CD99 and FLI1, while ERG positivity was only seen in EWSR1-ERG fusion positive ES. WT1 was negative in all ES. Expression profiling validated by q-PCR revealed a distinct gene signature associated with CIC-DUX4 fusion, with upregulation of ETS transcription factors (ETV4, ETV1, and ETV5) and WT1, among top overexpressed genes compared to ES, other sarcomas and normal tissue. In conclusion, the distinct gene signature and immunoprofile of CIC-DUX4 sarcomas suggest a distinct pathogenesis from ES. The consistent WT1 expression may provide a useful clue in the diagnosis in the context of round cell sarcomas negative for EWSR1 rearrangement. © 2014 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Óseas/genética , Proteínas de Unión a Calmodulina/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Unión al ARN/genética , Sarcoma de Ewing/genética , Translocación Genética , Adolescente , Adulto , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Niño , Femenino , Reordenamiento Génico , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/metabolismo , Proteína EWS de Unión a ARN , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Transcripción Genética , Transcriptoma
7.
J Neurooncol ; 116(2): 237-49, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24264533

RESUMEN

Epigenetic alterations are common events in cancer. Using a genome wide methylation screen (Restriction Landmark Genomic Scanning-RLGS) we identified the gene for the dopamine receptor D4 (DRD4) as tumor-specific methylated. As DRD4 is involved in early brain development and may thus be involved in developmentally dependent tumors of the CNS in children epigenetic deregulation of DRD4 and its functional consequences were analyzed in vitro. CpG methylation of DRD4 was detected in 18/24 medulloblastomas, 23/29 ependymomas, 6/6 high-grade gliomas, 7/10 CNS PNET and 8/8 cell lines by qCOBRA and bisulfite sequencing. Real-time RT-PCR demonstrated a significantly inferior expression of DRD4 in primary tumors compared to cell lines and non-malignant control tissues. Epigenetic deregulation of DRD4 was analyzed in reexpression experiments and restoration of DRD4 was observed in medulloblastoma (MB) cells treated with 5-Aza-CdR. Reexpression was not accompanied by demethylation of the DRD4 promoter but by a significant decrease of H3K27me3 and of bound enhancer of zeste homologue 2 (EZH2). Knockdown of EZH2 demonstrated DRD4 as a direct target for inhibition by EZH2. Stimulation of reexpressed DRD4 resulted in an activation of ERK1/2. Our analyses thus disclose that DRD4 is epigenetically repressed in CNS tumors of childhood. DRD4 is a direct target of EZH2 in MB cell lines. EZH2 appears to dominate over aberrant DNA methylation in the epigenetic inhibition of DRD4, which eventually leads to inhibition of a DRD4-mediated stimulation of the ERK1/2 kinase pathway.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Epigénesis Genética/fisiología , Receptores de Dopamina D4/metabolismo , Apoptosis/efectos de los fármacos , Azacitidina/análogos & derivados , Azacitidina/uso terapéutico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/metabolismo , Niño , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Decitabina , Relación Dosis-Respuesta a Droga , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Ácidos Hidroxámicos/uso terapéutico , Masculino , Meduloblastoma/patología , Tumores Neuroectodérmicos Primitivos/patología , Receptores de Dopamina D4/genética , Sulfitos/farmacología , Células Tumorales Cultivadas
8.
J Pathol ; 230(1): 70-81, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23338946

RESUMEN

Metastatic spread in Ewing sarcomas (ES) is frequent and haematogenous. G-protein coupled receptor 64 (GPR64), an orphan receptor with normal expression restricted to human epididymis is specifically over-expressed in ES among sarcoma, but also up-regulated in a number of carcinomas derived from prostate, kidney or lung. Inhibition of GPR64 expression in ES by RNA interference impaired colony formation in vitro and suppressed local tumour growth and metastasis in Rag2(-/-) γC (-/-) mice. Microarray analysis after GPR64 knock down revealed a GPR64-mediated repression of genes involved in neuronal development like SLIT, drosophila, homolog of, 2 (SLIT2), and genes regulating transcription including pre-B cell leukemia homeobox 2 (PBX2). Concurrently, the suppression of GPR64 increased ES susceptibility to TRAIL induced apoptosis. Moreover, a GPR64-mediated induction of placental growth factor (PGF) in ES was observed. PGF suppression by RNA interference resulted in a reduction of metastatic growth similar to that observed after GPR64 knock down. Importantly, inhibition of GPR64 as well as PGF expression was associated with a reduced expression of matrix metalloproteinase (MMP) 1 and invasiveness in vitro. Furthermore, MMP1 knock down abrogated lung metastasis in Rag2(-/-) γC (-/-) mice. Thus, GPR64 expression in ES maintains an immature phenotype that is less sensitive to TRAIL-induced apoptosis and via its up-regulation of PGF and MMP1 orchestrates and promotes invasiveness and metastatic spread.


Asunto(s)
Neoplasias Óseas/patología , Metaloproteinasa 13 de la Matriz/metabolismo , Proteínas Gestacionales/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sarcoma de Ewing/secundario , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Invasividad Neoplásica/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma , Factor de Crecimiento Placentario , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Células Tumorales Cultivadas , Regulación hacia Arriba/fisiología
9.
Biol Cell ; 105(7): 289-303, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23521563

RESUMEN

BACKGROUND INFORMATION: Exosomes are small RNA- and protein-containing extracellular vesicles (EVs) that are thought to mediate hetero- and homotypic intercellular communication between normal and malignant cells.Tumour-derived exosomes are believed to promote re-programming of the tumour-associated stroma to favour tumour growth and metastasis. Currently, exosomes have been intensively studied in carcinomas. However, little is known about their existence and possible role in sarcomas. RESULTS: Here, we report on the identification of vesicles with exosomal features derived from Ewing's sarcoma(ES), the second most common soft-tissue or bone cancer in children and adolescents. ES cell line-derived EV shave been isolated by ultracentrifugation and analysed by flow-cytometric assessment of the exosome-associated proteins CD63 and CD81 as well as by electron microscopy. They proved to contain ES-specific transcripts including EWS-FLI1, which were suitable for the sensitive detection of ES cell line-derived exosomes by qRT-PCRin a pre-clinical model for patient plasma. Microarray analysis of ES cell line-derived exosomes revealed that they share a common transcriptional signature potentially involved in G-protein-coupled signalling, neurotransmitter signalling and stemness. CONCLUSIONS: In summary, our results imply that ES-derived exosomes could eventually serve as biomarkers for minimal residual disease diagnostics in peripheral blood and prompt further investigation of their potential biological role in modification of the ES-associated microenvironment


Asunto(s)
Exosomas/metabolismo , Proteínas de Fusión Oncogénica/sangre , Proteína Proto-Oncogénica c-fli-1/sangre , Proteína EWS de Unión a ARN/sangre , Sarcoma de Ewing/sangre , Neoplasias de los Tejidos Blandos/sangre , Tetraspanina 28/sangre , Tetraspanina 30/sangre , Biomarcadores/sangre , Línea Celular Tumoral , Exosomas/genética , Humanos , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/genética , Neoplasias de los Tejidos Blandos/diagnóstico , Neoplasias de los Tejidos Blandos/genética , Tetraspanina 28/genética , Tetraspanina 30/genética
10.
Biol Cell ; 105(11): 535-47, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24033704

RESUMEN

BACKGROUND INFORMATION: Ewing's sarcoma (ES) is the second most common bone-associated malignancy in children and is driven by the fusion oncogene EWS/FLI1 and characterised by rapid growth and early metastasis. Here, we explored the role of the Zyxin-related protein thyroid receptor interacting protein 6 (TRIP6) in ES. The Zyxin family comprises seven homologous proteins involved in migration and proliferation of many cell types of which Zyxin has been described as a tumour suppressor in ES. RESULTS: By interrogation of published microarray data (n = 1254), we observed that of all Zyxin proteins, only TRIP6 is highly overexpressed in primary ES compared with normal tissues. Re-analysis of published EWS/FLI1 gain- and loss-of-function microarray experiments as well as chromatin-immunoprecipitation assays revealed that TRIP6 overexpression is not mediated by EWS/FLI1. Microarray and subsequent gene-set enrichment analyses of ES cells with and without RNA interference-mediated TRIP6 knockdown demonstrated that TRIP6 expression confers a pro-proliferative and pro-invasive transcriptional signature to ES cells. While short-term proliferation was not considerably affected by TRIP6 knockdown, silencing of the protein significantly reduced migration, invasion, long-term proliferation and clonogenicity of ES cells in vitro as well as tumourigenicity in vivo. CONCLUSIONS: Taken together, our data indicate that TRIP6 acts, in contrast to Zyxin, as an oncogene that partially accounts for the autonomous migratory, invasive and proliferative properties of ES cells independent of EWS/FLI1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Proteínas con Dominio LIM/metabolismo , Sarcoma de Ewing/patología , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Células Clonales , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Complejo de la Endopetidasa Proteasomal , Sarcoma de Ewing/genética
11.
Biol Cell ; 103(12): 573-91, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22054418

RESUMEN

Integrating signals from the ECM (extracellular matrix) via the cell surface into the nucleus is an essential feature of multicellular life and often malfunctions in cancer. To date many signal transducers known as shuttle proteins have been identified that act as both: a cytoskeletal and a signalling protein. Here, we highlight the interesting member of the Zyxin family TRIP6 [thyroid receptor interactor protein 6; also designated ZRP-1 (zyxin-related protein 1)] and review current literature to define its role in cell physiology and cancer. TRIP6 is a versatile scaffolding protein at FAs (focal adhesions) involved in cytoskeletal organization, coordinated cell migration and tissue invasion. Via its LIM and TDC domains TRIP6 interacts with different components of the LPA (lysophosphatidic acid), NF-κB (nuclear factor κB), glucocorticoid and AMPK (AMP-activated protein kinase) signalling pathway and thereby modulates their activity. Within the nucleus TRIP6 acts as a transcriptional cofactor regulating the transcriptional responses of these pathways. Moreover, intranuclear TRIP6 associates with proteins ensuring telomere protection and hence may contribute to genome stability. Accordingly, TRIP6 is engaged in key cellular processes such as cell proliferation, differentiation and survival. These diverse functions of TRIP6 are found to be dysregulated in various cancers and may have pleiotropic roles in tumour initiation, tumour growth and metastasis, which turn TRIP6 into an attractive candidate for cancer diagnosis and targeted therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas con Dominio LIM/metabolismo , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Proteínas con Dominio LIM/genética , Neoplasias/genética , Neoplasias/fisiopatología , Complejo de la Endopetidasa Proteasomal , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética
12.
Proc Natl Acad Sci U S A ; 106(13): 5324-9, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19289832

RESUMEN

Ewing tumors (ET) are highly malignant, localized in bone or soft tissue, and are molecularly defined by ews/ets translocations. DNA microarray analysis revealed a relationship of ET to both endothelium and fetal neural crest. We identified expression of histone methyltransferase enhancer of Zeste, Drosophila, Homolog 2 (EZH2) to be increased in ET. Suppressive activity of EZH2 maintains stemness in normal and malignant cells. Here, we found EWS/FLI1 bound to the EZH2 promoter in vivo, and induced EZH2 expression in ET and mesenchymal stem cells. Down-regulation of EZH2 by RNA interference in ET suppressed oncogenic transformation by inhibiting clonogenicity in vitro. Similarly, tumor development and metastasis was suppressed in immunodeficient Rag2(-/-)gamma(C)(-/-) mice. EZH2-mediated gene silencing was shown to be dependent on histone deacetylase (HDAC) activity. Subsequent microarray analysis of EZH2 knock down, HDAC-inhibitor treatment and confirmation in independent assays revealed an undifferentiated phenotype maintained by EZH2 in ET. EZH2 regulated stemness genes such as nerve growth factor receptor (NGFR), as well as genes involved in neuroectodermal and endothelial differentiation (EMP1, EPHB2, GFAP, and GAP43). These data suggest that EZH2 might have a central role in ET pathology by shaping the oncogenicity and stem cell phenotype of this tumor.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Células Endoteliales/patología , Placa Neural/patología , Sarcoma de Ewing/etiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Histona Desacetilasas , Humanos , Células Madre Mesenquimatosas , Ratones , Metástasis de la Neoplasia , Proteínas de Fusión Oncogénica , Complejo Represivo Polycomb 2 , Proteína Proto-Oncogénica c-fli-1 , Proteína EWS de Unión a ARN , Sarcoma de Ewing/patología
13.
J Exp Clin Cancer Res ; 40(1): 322, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654445

RESUMEN

BACKGROUND: Histone acetylation and deacetylation seem processes involved in the pathogenesis of Ewing sarcoma (EwS). Here histone deacetylases (HDAC) class I were investigated. METHODS: Their role was determined using different inhibitors including TSA, Romidepsin, Entinostat and PCI-34051 as well as CRISPR/Cas9 class I HDAC knockouts and HDAC RNAi. To analyze resulting changes microarray analysis, qRT-PCR, western blotting, Co-IP, proliferation, apoptosis, differentiation, invasion assays and xenograft-mouse models were used. RESULTS: Class I HDACs are constitutively expressed in EwS. Patients with high levels of individual class I HDAC expression show decreased overall survival. CRISPR/Cas9 class I HDAC knockout of individual HDACs such as HDAC1 and HDAC2 inhibited invasiveness, and blocked local tumor growth in xenograft mice. Microarray analysis demonstrated that treatment with individual HDAC inhibitors (HDACi) blocked an EWS-FLI1 specific expression profile, while Entinostat in addition suppressed metastasis relevant genes. EwS cells demonstrated increased susceptibility to treatment with chemotherapeutics including Doxorubicin in the presence of HDACi. Furthermore, HDACi treatment mimicked RNAi of EZH2 in EwS. Treated cells showed diminished growth capacity, but an increased endothelial as well as neuronal differentiation ability. HDACi synergizes with EED inhibitor (EEDi) in vitro and together inhibited tumor growth in xenograft mice. Co-IP experiments identified HDAC class I family members as part of a regulatory complex together with PRC2. CONCLUSIONS: Class I HDAC proteins seem to be important mediators of the pathognomonic EWS-ETS-mediated transcription program in EwS and in combination therapy, co-treatment with HDACi is an interesting new treatment opportunity for this malignant disease.


Asunto(s)
Histona Desacetilasas/efectos adversos , Sarcoma de Ewing/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones
14.
Cancers (Basel) ; 12(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012890

RESUMEN

BACKGROUND: Previously, we used inhibitors blocking BET bromodomain binding proteins (BRDs) in Ewing sarcoma (EwS) and observed that long term treatment resulted in the development of resistance. Here, we analyze the possible interaction of BRD4 with cyclin-dependent kinase (CDK) 9. METHODS: Co-immunoprecipitation experiments (CoIP) to characterize BRD4 interaction and functional consequences of inhibiting transcriptional elongation were assessed using drugs targeting of BRD4 or CDK9, either alone or in combination. RESULTS: CoIP revealed an interaction of BRD4 with EWS-FLI1 and CDK9 in EwS. Treatment of EwS cells with CDKI-73, a specific CDK9 inhibitor (CDK9i), induced a rapid downregulation of EWS-FLI1 expression and block of contact-dependent growth. CDKI-73 induced apoptosis in EwS, as depicted by cleavage of Caspase 7 (CASP7), PARP and increased CASP3 activity, similar to JQ1. Microarray analysis following CDKI-73 treatment uncovered a transcriptional program that was only partially comparable to BRD inhibition. Strikingly, combined treatment of EwS with BRD- and CDK9-inhibitors re-sensitized cells, and was overall more effective than individual drugs not only in vitro but also in a preclinical mouse model in vivo. CONCLUSION: Treatment with BRD inhibitors in combination with CDK9i offers a new treatment option that significantly blocks the pathognomonic EWS-ETS transcriptional program and malignant phenotype of EwS.

16.
Oncotarget ; 9(29): 20747-20760, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29755686

RESUMEN

Survival rates of pediatric sarcoma patients stagnated during the last two decades, especially in adolescents and young adults (AYAs). Targeted therapies offer new options in refractory cases. Gene expression profiling provides a robust method to characterize the transcriptome of each patient's tumor and guide the choice of therapy. Twenty patients with refractory pediatric sarcomas (age 8-35 years) were assessed with array profiling: ten had Ewing sarcoma, five osteosarcoma, and five soft tissue sarcoma. Overexpressed genes and deregulated pathways were identified as actionable targets and an individualized combination of targeted therapies was recommended. Disease status, survival, adverse events (AEs), and quality of life (QOL) were assessed in patients receiving targeted therapy (TT) and compared to patients without targeted therapy (non TT). Actionable targets were identified in all analyzed biopsies. Targeted therapy was administered in nine patients, while eleven received no targeted therapy. No significant difference in risk factors between these two groups was detected. Overall survival (OS) and progression free survival (PFS) were significantly higher in the TT group (OS: P=0.0014, PFS: P=0.0011). Median OS was 8.83 versus 4.93 months and median PFS was 6.17 versus 1.6 months in TT versus non TT group, respectively. QOL did not differ at baseline as well as at four week intervals between the two groups. TT patients had less grade 1 AEs (P=0.009). The frequency of grade 2-4 AEs did not differ. Overall, expression based targeted therapy is a feasible and likely beneficial approach in patients with refractory pediatric sarcomas that warrants further study.

18.
Oncoimmunology ; 6(2): e1273301, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344885

RESUMEN

Pregnancy-associated plasma protein-A (PAPPA), also known as pappalysin, is a member of the insulin-like growth factor (IGF) family. PAPPA acts as a protease, cleaving IGF inhibitors, i.e., IGF binding proteins (IGFBPs), thereby setting free IGFs. The insulin/IGF-axis is involved in cancer in general and in Ewing sarcoma (ES) in particular. ES is a highly malignant bone tumor characterized by early metastatic spread. PAPPA is associated with various cancers. It is overexpressed and required for proliferation in ES. PAPPA also stimulates normal bone growth. We isolated HLA-A*02:01+/peptide-restricted T cells from A*02:01- healthy donors directed against PAPPA, generated by priming with A*02:01+ PAPPA peptide loaded dendritic cells. After TCR identification, retrovirally TCR transduced CD8+ T cells were assessed for their in vitro specificity and in vivo efficacy in human ES bearing Rag2-/-γc-/- mice. Engraftment in mice and tumor infiltration of TCR transgenic T cells in the mice was evaluated. The TCR transgenic T cell clone PAPPA-2G6 demonstrated specific reactivity toward HLA-A*02:01+/PAPPA+ ES cell lines. We furthermore detected circulating TCR transgenic T cells in the blood in Rag2-/-γc-/- mice and in vivo engraftment in bone marrow. Tumor growth in mice with xenografted ES was significantly reduced after treatment with PAPPA-2G6 TCR transgenic T cells in contrast to controls. Tumors of treated mice revealed tumor-infiltrating PAPPA-2G6 TCR transgenic T cells. In summary, we demonstrate that PAPPA is a first-rate target for TCR-based immunotherapy of ES.

20.
Mol Oncol ; 11(9): 1288-1301, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28319320

RESUMEN

Ewing sarcomas (ES) are highly malignant, osteolytic bone or soft tissue tumors, which are characterized by EWS-ETS translocations and early metastasis to lung and bone. In this study, we investigated the role of the BRICHOS chaperone domain-containing endochondral bone protein chondromodulin I (CHM1) in ES pathogenesis. CHM1 is significantly overexpressed in ES, and chromosome immunoprecipitation (ChIP) data demonstrate CHM1 to be directly bound by an EWS-ETS translocation, EWS-FLI1. Using RNA interference, we observed that CHM1 promoted chondrogenic differentiation capacity of ES cells but decreased the expression of osteolytic genes such as HIF1A, IL6, JAG1, and VEGF. This was in line with the induction of the number of tartrate-resistant acid phosphatase (TRAP+ )-stained osteoclasts in an orthotopic model of local tumor growth after CHM1 knockdown, indicating that CHM1-mediated inhibition of osteomimicry might play a role in homing, colonization, and invasion into bone tissues. We further demonstrate that CHM1 enhanced the invasive potential of ES cells in vitro. This invasiveness was in part mediated via CHM1-regulated matrix metallopeptidase 9 expression and correlated with the observation that, in an xenograft mouse model, CHM1 was essential for the establishment of lung metastases. This finding is in line with the observed increase in CHM1 expression in patient specimens with ES lung metastases. Our results suggest that CHM1 seems to have pleiotropic functions in ES, which need to be further investigated, but appears to be essential for the invasive and metastatic capacities of ES.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Pulmonares/secundario , Proteínas de la Membrana/metabolismo , Sarcoma de Ewing/patología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular , Condrocitos/metabolismo , Condrocitos/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Invasividad Neoplásica , Fenotipo , Sarcoma de Ewing/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA