Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ecol Lett ; 23(6): 962-972, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32266768

RESUMEN

Urbanisation is driving rapid declines in species richness and abundance worldwide, but the general implications for ecosystem function and services remain poorly understood. Here, we integrate global data on bird communities with comprehensive information on traits associated with ecological processes to show that assemblages in highly urbanised environments have substantially different functional composition and 20% less functional diversity on average than surrounding natural habitats. These changes occur without significant decreases in functional dissimilarity between species; instead, they are caused by a decrease in species richness and abundance evenness, leading to declines in functional redundancy. The reconfiguration and decline of native functional diversity in cities are not compensated by the presence of exotic species but are less severe under moderate levels of urbanisation. Thus, urbanisation has substantial negative impacts on functional diversity, potentially resulting in impaired provision of ecosystem services, but these impacts can be reduced by less intensive urbanisation practices.


Asunto(s)
Ecosistema , Urbanización , Animales , Biodiversidad , Aves , Ciudades
2.
Oecologia ; 186(2): 339-346, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29209844

RESUMEN

The increasing use of phylogenetic methods in community ecology recognizes that accumulated evolutionary differences among species mirror, to some extent, ecological processes. The scope of this work is thus to propose a new method for the measurement of community-level phylogenetic redundancy, which takes into account the branching pattern of the underlying phylogeny. Like for functional redundancy, a measure of phylogenetic redundancy can be described as a normalized measure in the range (0-1) that relates the observed community-level phylogenetic diversity to the value of a hypothetical assemblage with the same abundance distribution of the focal community in which all species had independent evolution. Therefore, phylogenetic redundancy can be interpreted as the diversity decrease that is obtained by taking into account the evolutionary relationships among species in the calculation of diversity. The behavior of the proposed method, for which we provide a simple R function called 'phyloredundancy', was evaluated with published data on Alpine plant communities along a primary succession on a glacier foreland in northern Italy. As shown by our results, the method accounts for the length of shared branches in the phylogeny, producing a coherent framework for describing the evolutionary relationships within a species assemblage. Being based on classical diversity measures, which have been used in ecology for decades, it also has a great potential for future research in phylogenetic community ecology.


Asunto(s)
Biota , Ecología , Biodiversidad , Evolución Biológica , Italia , Filogenia , Plantas
3.
Environ Manage ; 56(1): 157-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25860597

RESUMEN

Recent advances in fire management led landscape managers to adopt an integrated fire fighting strategy in which fire suppression is supported by prevention actions and by knowledge of local fire history and ecology. In this framework, an accurate evaluation of fire ignition risk and its environmental drivers constitutes a basic step toward the optimization of fire management measures. In this paper, we propose a multivariate method for identifying and spatially portraying fire ignition risk across a complex and heterogeneous landscape such as the National Park of Cilento, Vallo di Diano, and Alburni (southern Italy). The proposed approach consists first in calculating the fire selectivity of several landscape features that are usually related to fire ignition, such as land cover or topography. Next, the fire selectivity values of single landscape features are combined with multivariate segmentation tools. The resulting fire risk map may constitute a valuable tool for optimizing fire prevention strategies and for efficiently allocating fire fighting resources.


Asunto(s)
Incendios/prevención & control , Mapeo Geográfico , Parques Recreativos , Humanos , Italia , Análisis Multivariante
4.
Environ Manage ; 53(6): 1077-84, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24705728

RESUMEN

Although recurrent fire events with very short return periods have the most dangerous effects on landscape degradation, only a few papers have explored the landscape ecological factors that drive the probability of fire recurrence. In this paper we apply a habitat suitability model for analyzing the spatial relationship between a selected set of landscape factors (mainly land use types) and fire recurrence in Sardinia (Italy) in the years 2005-2010. Our results point out that fire occurrence in already burned areas is lower than expected in natural and semi-natural land cover types, like forest and shrublands. To the contrary, like in all regions where human activity is the main source of fire ignitions, the probability of fire recurrence is higher at low altitudes and close to roads and to urban and agricultural land cover types, thus showing marked preference for those landscape factors denoting higher anthropogenic ignition risk.


Asunto(s)
Conservación de los Recursos Naturales , Incendios , Modelos Teóricos , Agricultura , Ecosistema , Actividades Humanas , Humanos , Italia , Árboles
5.
Ecol Evol ; 13(10): e10614, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37841225

RESUMEN

Functional diversity is regarded as a key concept for understanding the link between ecosystem function and biodiversity. The different and ecologically well-defined aspects of the concept are reflected by the so-called functional components, for example, functional richness and divergence. Many authors proposed that components be distinguished according to the multivariate technique on which they rely, but more recent studies suggest that several multivariate techniques, providing different functional representations (such as dendrograms and ordinations) of the community can in fact express the same functional component. Here, we review the relevant literature and find that (1) general ecological acceptance of the field is hampered by ambiguous terminology and (2) our understanding of the role of multivariate techniques in defining components is unclear. To address these issues, we provide new definitions for the three basic functional diversity components namely functional richness, functional divergence and functional regularity. In addition, we present a classification of presence-/absence-based approaches suitable for quantifying these components. We focus exclusively on the binary case for its relative simplicity. We find illogical, as well as logical but unused combinations of components and representations; and reveal that components can be quantified almost independently from the functional representation of the community. Finally, theoretical and practical implications of the new classification are discussed.

6.
Ecol Appl ; 22(1): 349-60, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22471095

RESUMEN

Urban forests provide important ecosystem services, such as urban air quality improvement by removing pollutants. While robust evidence exists that plant physiology, abundance, and distribution within cities are basic parameters affecting the magnitude and efficiency of air pollution removal, little is known about effects of plant diversity on the stability of this ecosystem service. Here, by means of a spatial analysis integrating system dynamic modeling and geostatistics, we assessed the effects of tree diversity on the removal of tropospheric ozone (O3) in Rome, Italy, in two years (2003 and 2004) that were very different for climatic conditions and ozone levels. Different tree functional groups showed complementary uptake patterns, related to tree physiology and phenology, maintaining a stable community function across different climatic conditions. Our results, although depending on the city-specific conditions of the studied area, suggest a higher function stability at increasing diversity levels in urban ecosystems. In Rome, such ecosystem services, based on published unitary costs of externalities and of mortality associated with O3, can be prudently valued to roughly US$2 and $3 million/year, respectively.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Ecosistema , Monitoreo del Ambiente , Ozono/metabolismo , Árboles , Contaminantes Atmosféricos/química , Atmósfera , Biodegradación Ambiental , Ozono/química , Ciudad de Roma , Árboles/metabolismo
7.
Oecologia ; 170(2): 501-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22526936

RESUMEN

Recently, dated phylogenies have been increasingly used for ecological studies on community structure and conservation planning. There is, however, a major impediment to a systematic application of phylogenetic methods in ecology: reliable phylogenies with time-calibrated branch lengths are lacking for a large number of taxonomic groups and this condition is likely to continue for a long time. A solution for this problem consists in using undated phylogenies or taxonomic hierarchies as proxies for dated phylogenies. Nonetheless, little is known on the potential loss of information of these approaches compared to studies using dated phylogenies with time-calibrated branch lengths. The aim of this study is to ask how the use of undated phylogenies and taxonomic hierarchies biases a very simple measure of diversity, the mean pairwise phylogenetic distance between community species, compared to the diversity of dated phylogenies derived from the freely available software Phylomatic. This is illustrated with three sets of data on plant species sampled at different scales. Our results show that: (1) surprisingly, the diversity computed from dated phylogenies derived from Phylomatic is more strongly related to the diversity computed from taxonomic hierarchies than to the diversity computed from undated phylogenies, while (2) less surprisingly, the strength of this relationship increases if we consider only angiosperm species.


Asunto(s)
Biodiversidad , Filogenia , Calibración , Conservación de los Recursos Naturales , Interpretación Estadística de Datos , Plantas/clasificación , Programas Informáticos
8.
Ecology ; 103(11): e3806, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35791858

RESUMEN

In trait-based ecology, phenotypic variation (PVar) is often quantified with measures expressing average differences between populations standardized in the range 0-1. However, these measures disregard the within-population trait variability. In addition, some of them cannot be partitioned between populations. These aspects can either alter their interpretation or limit their applicability. To overcome these problems, we propose a new measure, the phenotypic dissimilarity (PhD) index, to quantify PVar between populations in scenarios of varying within-population interindividual trait variability. PhD can also quantify within-population PVar while accounting for intraindividual trait variability. Using simulated and real data, we show that using the PhD index becomes important when the within-population trait variability is not negligible, as in all ecological studies. By accounting for within-population trait variability, the PhD index does not overestimate PVar across an environmental gradient compared to other estimators. Traits inherently vary within species. Accounting for such variability is essential to understanding species' phenotypic responses to environmental cues. The proposed PhD index will provide ecologists with a tool for quantifying PVar within species and compare it between species at different levels of biological organization. We provide an R function to calculate the PhD index.


Asunto(s)
Variación Biológica Poblacional , Ecología , Fenotipo
9.
J Geophys Res Biogeosci ; 127(9): e2022JG007026, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36247363

RESUMEN

Biodiversity monitoring is an almost inconceivable challenge at the scale of the entire Earth. The current (and soon to be flown) generation of spaceborne and airborne optical sensors (i.e., imaging spectrometers) can collect detailed information at unprecedented spatial, temporal, and spectral resolutions. These new data streams are preceded by a revolution in modeling and analytics that can utilize the richness of these datasets to measure a wide range of plant traits, community composition, and ecosystem functions. At the heart of this framework for monitoring plant biodiversity is the idea of remotely identifying species by making use of the 'spectral species' concept. In theory, the spectral species concept can be defined as a species characterized by a unique spectral signature and thus remotely detectable within pixel units of a spectral image. In reality, depending on spatial resolution, pixels may contain several species which renders species-specific assignment of spectral information more challenging. The aim of this paper is to review the spectral species concept and relate it to underlying ecological principles, while also discussing the complexities, challenges and opportunities to apply this concept given current and future scientific advances in remote sensing.

10.
Theor Popul Biol ; 80(2): 114-20, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21510965

RESUMEN

Functional diversity is generally regarded as the constituent of biological diversity that considers how the species functional traits affect ecosystem processes. Due to its ecological relevance, a number of indices of functional diversity have been proposed to date based on distinct objectives and motivations. Such proliferation of indices can be at least partially overcome by a more fundamental mathematical approach. In this paper we propose an intrinsic ordering approach for abundance-weighted measures of functional diversity that is similar to the Lorenz curves used by ecologists for ordering evenness measures. We then discuss the relevance of a number of functional diversity indices that have a behavior compatible with the proposed partial ordering.


Asunto(s)
Biodiversidad , Ecosistema
11.
Oecologia ; 167(1): 181-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21424717

RESUMEN

Assessing the effects of environmental constraints on community structure often relies on methods that consider changes in species functional traits in response to environmental processes. Various indices have been proposed to measure relevant aspects of community trait composition from different viewpoints and perspectives. Among these, the 'community-weighted mean trait value' (CWM) and the Rao coefficient have been widely used in ecological research for summarizing different facets of functional composition and diversity. Analyzing changes in functional diversity of bee communities along a post-fire successional gradient in southern Switzerland we show that these two measures may be used to describe two complementary aspects of community structure, such as the mean and the dispersion of functional traits within a given species assemblage. While CWM can be adequately used to summarize shifts in mean trait values within communities due to environmental selection for certain functional traits, the Rao coefficient can be effectively applied to analyze patterns of trait convergence or divergence compared to a random expectation.


Asunto(s)
Abejas , Biodiversidad , Modelos Biológicos , Algoritmos , Animales , Suiza
12.
Methods Ecol Evol ; 12(6): 1093-1102, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34262682

RESUMEN

Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow.In this paper, we present a new R package-rasterdiv-to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns.The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms.

13.
Environ Monit Assess ; 164(1-4): 445-52, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19396557

RESUMEN

Because of the increasing anthropogenic fire activity, understanding the role of land-use in shaping wildfire regimes has become a major concern. In the last decade, an increasing number of studies have been carried out on the relationship between land-use and wildfire patterns, in order to identify land-use types where fire behaves selectively, showing a marked preference (or avoidance) in terms of fire incidence. By contrast, the temporal aspects of the relationship between landuse types and wildfire occurrence have received far less attention. The aim of this paper is, thus, to analyze the temporal patterns of fire occurrence in Sardinia (Italy) during the period 2000-2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model. The study highlighted a close relationship between the timing of fire occurrence and land-cover that is primarily governed by two complementary processes: climatic factors that act indirectly on the timing of wildfires determining the spatial distribution of land-use types, and human population and human pressure that directly influence fire ignition. From a practical viewpoint, understanding the temporal trends of wildfires within the different land-use classes can be an effective decision-support tool for fire agencies in managing fire risk and for producing provisional models of fire behavior under changing climatic scenarios and evolving landscapes.


Asunto(s)
Incendios , Estaciones del Año , Conservación de los Recursos Naturales , Italia
14.
Theor Popul Biol ; 76(4): 299-302, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19818799

RESUMEN

Many applications of diversity indices are only valid if they are first transformed into their equivalent number of species. These equivalent numbers of species can be multiplicatively partitioned into independent alpha, beta and gamma components, and can be formed into mathematically consistent similarity measures. The utility of beta diversity and similarity measures that incorporate information about the degree of ecological dissimilarity between species is becoming increasingly recognized. The concept of equivalent number of species is here extended to Rao's quadratic entropy, opening the way to methods of diversity partitioning that take into account taxonomic or ecological differences between species.


Asunto(s)
Biodiversidad , Entropía , Ecología
15.
Ecology ; 100(12): e02852, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31350905

RESUMEN

An enormous number of measures based on different criteria have been proposed to quantify evenness or unevenness among species relative abundances in an assemblage. However, a unified approach that can encompass most of the widely used indices is still lacking. Here, we first present some basic requirements for an evenness measure. We then propose that unevenness among species relative abundances in an assemblage can be measured by a normalized divergence between the vector of species relative abundances and the mean vector, where the mean vector represents the species relative abundances of a completely even assemblage. Thus, evenness among species relative abundances is measured by the corresponding normalized extent of closeness between these two vectors. We consider five divergence measures, leading to five classes of evenness indices. All our evenness measures are in terms of diversity (Hill number) of order q > 0 (here q controls the weighting of species relative abundances) and species richness (diversity of order q = 0). We propose quantifying evenness through a continuous profile that depicts evenness as a function of diversity order q > 0. The profiles can be easily and visually compared across multiple assemblages. Our evenness indices satisfy all the requirements presented in this paper and encompass many widely used evenness measures as special cases. When there are multiple assemblages, the abundance-based Jaccard- and Sørensen-type dissimilarity measures (which are monotonic functions of beta diversity) can be expressed as weighted averages of the individual species' compositional unevenness values; here, each individual species' compositional unevenness is calculated based on that species' abundances among assemblages. The contribution of a species to each dissimilarity measure can be clearly disentangled and quantified in terms of this single species' compositional unevenness among assemblages. Thus, our framework links the concepts of evenness, diversity, beta diversity, and similarity. Moreover, the framework can be readily extended to a phylogenetic version. A real data example is used to illustrate our approach. We also discuss some criteria and other measures that were previously proposed in the literature.


Asunto(s)
Algoritmos , Biodiversidad , Ecosistema , Filogenia
16.
Theor Popul Biol ; 73(2): 244-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18179809

RESUMEN

Whittaker first proposed to measure the variation in species composition among plots or beta-diversity as the ratio between regional diversity (gamma-diversity) and average local diversity (alpha-diversity). More recently, an alternative way of partitioning diversity for which beta-diversity is obtained as the difference between gamma-diversity and average alpha-diversity has become very popular for linking the structure of species assemblages to ecosystem functioning in a spatially explicit manner. Unfortunately, additive beta-diversity computed from species presences and absences suffers from the major drawback of being dependent on regional species richness. For instance, if the separation between beta-diversity and gamma-diversity is incomplete, so that variation in species composition is affected by species richness, then differences in beta-diversity values among different sets of plots could reflect differences in the species count rather than any fundamental difference in species composition among the plots. Based on the above observation, in this paper I will first propose a basic requirement for beta-diversity measures that adequately captures our intuitive notion of independence of species richness. Next, I will show that additive beta-diversity computed from species presence and absence scores can be interpreted within the framework of fuzzy set theory. Finally, based on this unusual "fuzzy" interpretation of additive beta-diversity, I will introduce two families of parametric beta-diversity measures whose members have varying sensitivities to the presence of rare and frequent species.


Asunto(s)
Biodiversidad , Ecosistema , Modelos Estadísticos , Animales , Lógica Difusa , Italia , Dinámica Poblacional , Especificidad de la Especie
17.
Ecol Evol ; 7(13): 4835-4843, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28690812

RESUMEN

The amount of variation in species composition among sampling units or beta diversity has become a primary tool for connecting the spatial structure of species assemblages to ecological processes. Many different measures of beta diversity have been developed. Among them, the total variance in the community composition matrix has been proposed as a single-number estimate of beta diversity. In this study, I first show that this measure summarizes the compositional variation among sampling units after nonlinear transformation of species abundances. Therefore, it is not always adequate for estimating beta diversity. Next, I propose an alternative approach for calculating beta diversity in which variance is substituted by a weighted measure of concentration (i.e., an inverse measure of evenness). The relationship between this new measure of beta diversity and so-called multiple-site dissimilarity measures is also discussed.

18.
Sci Total Environ ; 584-585: 282-290, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28187937

RESUMEN

Anticipating species distributions in space and time is necessary for effective biodiversity conservation and for prioritising management interventions. This is especially true when considering invasive species. In such a case, anticipating their spread is important to effectively plan management actions. However, considering uncertainty in the output of species distribution models is critical for correctly interpreting results and avoiding inappropriate decision-making. In particular, when dealing with species inventories, the bias resulting from sampling effort may lead to an over- or under-estimation of the local density of occurrences of a species. In this paper we propose an innovative method to i) map sampling effort bias using cartogram models and ii) explicitly consider such uncertainty in the modeling procedure under a Bayesian framework, which allows the integration of multilevel input data with prior information to improve the anticipation species distributions.

19.
Ecol Evol ; 6(15): 5383-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27551390

RESUMEN

Plot-to-plot dissimilarity measures are considered a valuable tool for understanding the complex ecological mechanisms that drive community composition. Traditional presence/absence coefficients are usually based on different combinations of the matching/mismatching components of the 2 × 2 contingency table. However, more recently, dissimilarity measures that incorporate information about the degree of functional differences between the species in both plots have received increasing attention. This is because such "functional dissimilarity measures" capture information on the species' functional traits, which is ignored by traditional coefficients. Therefore, functional dissimilarity measures tend to correlate more strongly with ecosystem-level processes, as species influence these processes via their traits. In this study, we introduce a new family of dissimilarity measures for presence and absence data, which consider functional dissimilarities among species in the calculation of the matching/mismatching components of the 2 × 2 contingency table. Within this family, the behavior of the Jaccard coefficient, together with its additive components, species replacement, and richness difference, is examined by graphical comparisons and ordinations based on simulated data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA